
Gerrit Code Review Cheatsheet
A quick reference guide for using Gerrit, a web-based team code collaboration tool. Covers essential commands and workflows for code review and

submission.

Gerrit Workflow Basics

Essential Git Commands for Gerrit

Gerrit Specifics

Basic Workflow Overview

Gerrit enhances the standard Git workflow by

introducing a code review stage before changes

are merged into the main repository. This ensures

higher code quality and adherence to project

standards.

The typical workflow involves pushing changes to

Gerrit, undergoing review by peers, addressing

feedback, and finally, submitting the reviewed

and approved changes.

Key Steps

1. Push

Changes:

Push your changes to Gerrit for

review using git push origin

HEAD:refs/for/<branch> .

2. Code

Review:

Reviewers provide feedback on

your changes via the Gerrit web

interface.

3. Address

Feedback:

Incorporate reviewer feedback by

amending your commit and

pushing the updated version to

Gerrit.

4. Submit

Changes:

Once your changes have received

the required approvals, submit

them through the Gerrit web

interface to be merged into the

main branch.

Gerrit Web Interface

The Gerrit web interface is where you’ll spend

most of your time. It allows you to view changes,

provide reviews, add comments, and submit

changes.

Key features include:

Dashboard: Overview of your changes and

reviews assigned to you.

Change View: Detailed view of a specific

change, including diffs, comments, and

review status.

Search: Powerful search functionality to find

changes based on various criteria.

Pushing Changes for Review

The primary way to submit code for review is

through the git push command with a specific

refspec.

git push origin HEAD:refs/for/<branch>

Pushes the current commit to Gerrit for review on

the specified branch.

Example:

git push origin HEAD:refs/for/master -

Pushes the current commit for review on the

master branch.

Amending Commits

To update a commit based on review feedback,

you need to amend the existing commit and push

it again. Gerrit recognizes amended commits by

their Change-Id.

git commit --amend

Opens the commit message editor to modify the

commit. Make sure to keep the Change-Id line

intact.

git push origin HEAD:refs/for/<branch>

After amending, push the updated commit to

Gerrit.

Fetching Changes

You may need to fetch changes from Gerrit to

test them locally before providing a review.

git fetch origin refs/changes/<X>/<Y>/<Z>

Fetches a specific change from Gerrit.

<X> : Last two digits of the change number.

<Y> : The change number.

<Z> : Patch set number.

git checkout FETCH_HEAD

Checks out the fetched change.

Change-Id

Gerrit uses a Change-Id to track revisions of a

change. This ID is automatically added to the

commit message when you first push a new

change.

Important: Do not modify or remove the

Change-Id line when amending commits. Doing

so will create a new change in Gerrit instead of

updating the existing one.

If you accidentally create a commit without a

Change-Id (e.g., when committing directly on the

command line), you can use the git commit --

amend command to add it. Gerrit provides a hook

to automatically generate a Change-Id.

Reviewer Actions

As a reviewer, you can perform several actions on

a change through the Gerrit web interface:

Approve/Reject: Indicate whether the

change meets the project’s quality standards.

Add Comments: Provide specific feedback

on lines of code or the overall change.

Add Reviewers: Request reviews from other

team members.

Verify: Indicate that change builds and

passes tests.

Submit: Submit the change after it receives

the required approvals. (Typically, only users

with submit permissions can perform this

action.)

Ignoring Files

Sometimes you need to make changes which you

do not want to be reviewed, such as debug

statements. Gerrit allows these files to be

ignored.

Add the file to .gitattributes file:

<file_name> gerrit-upload:false

Page 1 of 2 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/633-gerrit-code-review-cheatsheet
http://cheatsheetshero.com/user/all/633-gerrit-code-review-cheatsheet
http://cheatsheetshero.com/user/all/633-gerrit-code-review-cheatsheet
https://cheatsheetshero.com/

Advanced Gerrit Features

Cherry-Picking Changes

You can cherry-pick changes from Gerrit to apply

them to a different branch.

git cherry-pick <commit-hash>

Cherry-picks the specified commit. You can find

the commit hash in the Gerrit web interface.

After cherry-picking, you may need to resolve

conflicts and then push the changes to Gerrit for

review on the target branch.

Rebase Workflow

Sometimes, changes will have merge conflicts

after another change is submitted to the same

branch. Using rebase allows you to update your

current change with the latest code.

git rebase origin/<branch>

Rebases the commits from the remote branch

into your current branch.

Push this change to Gerrit to update for review.

Gerrit Permissions

Gerrit uses a powerful permission system to

control access to projects and branches.

Permissions can be assigned to users or groups.

Common permissions include:

Read: Allows users to view the project.

Submit: Allows users to submit changes.

Code Review: Allows users to provide code

reviews.

Administrate: Allows users to manage the

project and its permissions.

Consult your Gerrit administrator for details on

the permission setup for your project.

Page 2 of 2 https://cheatsheetshero.com

https://cheatsheetshero.com/

