
DevOps Deployment Tools Cheatsheet
A comprehensive cheat sheet covering essential DevOps and Cloud deployment tools, their functionalities, and usage, with practical examples.

Ansible

Terraform

Core Concepts

Ansible: An open-source automation tool used

for configuration management, application

deployment, task automation, and IT

orchestration.

Playbooks: YAML files that define the tasks to be

executed on managed nodes.

Inventory: A list of managed nodes (hosts) that

Ansible manages, typically defined in a file.

Modules: Reusable, standalone scripts that

Ansible uses to perform tasks on managed nodes.

Roles: A way to organize and reuse Ansible

playbooks. Roles group together related tasks,

variables, and handlers.

Common Commands

ansible --version Check the Ansible

version.

ansible all -m

ping -i inventory

Ping all hosts in the

inventory file.

ansible-playbook

playbook.yml -i

inventory

Run an Ansible playbook

against the inventory.

ansible-galaxy

install role_name

Install a role from

Ansible Galaxy.

ansible-vault

encrypt file.yml

Encrypt a file using

Ansible Vault.

Example Playbook

- hosts: webservers

 become: true

 tasks:

 - name: Ensure Apache is installed

 apt:

 name: apache2

 state: present

 - name: Ensure Apache is running

 service:

 name: apache2

 state: started

Key Concepts

Terraform: An infrastructure as code (IaC) tool

that enables you to define and provision

infrastructure using a declarative configuration

language.

Providers: Plugins that allow Terraform to interact

with different infrastructure platforms (e.g., AWS,

Azure, GCP).

Resources: Components of your infrastructure,

such as virtual machines, networks, and

databases.

Modules: Reusable and composable units of

Terraform configuration, similar to functions in

programming.

State: Terraform uses a state file to track the

current configuration of your infrastructure.

Common Commands

terraform

init

Initialize a Terraform working

directory.

terraform

plan

Show changes required by the

current configuration.

terraform

apply

Apply the changes to the

infrastructure.

terraform

destroy

Destroy the infrastructure

managed by Terraform.

terraform

show

Inspect the current Terraform

state.

Example Configuration

terraform {

 required_providers {

 aws = {

 source = "hashicorp/aws"

 version = "~> 4.0"

 }

 }

}

provider "aws" {

 region = "us-west-2"

}

resource "aws_instance" "example" {

 ami = "ami-

0c55b9479a3c8c88c" # Example AMI

 instance_type = "t2.micro"

 tags = {

 Name = "ExampleInstance"

 }

}

Page 1 of 2 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/637-devops-deployment-tools-cheatsheet
http://cheatsheetshero.com/user/all/637-devops-deployment-tools-cheatsheet
http://cheatsheetshero.com/user/all/637-devops-deployment-tools-cheatsheet
https://cheatsheetshero.com/

Kubernetes Deployments

Jenkins

Core Components

Deployment: Manages the desired state of your

application by ensuring the specified number of

replicas are running.

Pod: The smallest deployable unit in Kubernetes,

representing a single instance of a running

process.

Service: An abstraction that defines a logical set

of Pods and a policy by which to access them.

Namespace: A way to divide cluster resources

between multiple users or teams.

Ingress: Manages external access to the services

in a cluster, typically via HTTP.

Common kubectl Commands

kubectl apply -f

deployment.yaml

Apply a configuration file

to create or update

resources.

kubectl get

deployments

List all deployments in

the current namespace.

kubectl describe

deployment

<deployment-name>

Show detailed

information about a

deployment.

kubectl scale

deployment

<deployment-name> -

-replicas=<number>

Scale the number of

replicas in a deployment.

kubectl delete

deployment

<deployment-name>

Delete a deployment.

Example Deployment YAML

apiVersion: apps/v1

kind: Deployment

metadata:

 name: nginx-deployment

spec:

 replicas: 3

 selector:

 matchLabels:

 app: nginx

 template:

 metadata:

 labels:

 app: nginx

 spec:

 containers:

 - name: nginx

 image: nginx:1.14.2

 ports:

 - containerPort: 80

Key Features

Jenkins: An open-source automation server. It

helps automate the parts of software

development related to building, testing, and

deploying, facilitating continuous integration and

continuous delivery.

Pipelines: Jenkins pipelines allow you to define

your entire build, test, and deployment process as

code.

Plugins: Jenkins has a wide variety of plugins

available to extend its functionality, such as

integrations with source control systems, build

tools, and deployment platforms.

Jobs: Automated tasks or series of tasks defined

within Jenkins to perform specific actions such as

building or deploying applications.

Nodes/Agents: Machines or containers that

Jenkins uses to execute build jobs.

Pipeline Syntax

pipelin

e { ...

}

Defines the overall pipeline structure.

agent {

... }

Specifies where the pipeline will

execute (e.g., any node, a specific

label).

stages

{ ... }

Defines the different stages of the

pipeline.

steps {

... }

Contains the actual commands to

execute in each stage.

post {

... }

Defines actions to be performed

after the pipeline, regardless of the

outcome.

Example Jenkinsfile

pipeline {

 agent any

 stages {

 stage('Build') {

 steps {

 echo 'Building...'

 }

 }

 stage('Test') {

 steps {

 echo 'Testing...'

 }

 }

 stage('Deploy') {

 steps {

 echo 'Deploying...'

 }

 }

 }

}

Page 2 of 2 https://cheatsheetshero.com

https://cheatsheetshero.com/

