CHEAT
SHEETS

Ansible

Core Concepts

DevOps Deployment Tools Cheatsheet

A comprehensive cheat sheet covering essential DevOps and Cloud deployment tools, their functionalities, and usage, with practical examples.

Common Commands

Example Playbook

Ansible: An open-source automation tool used
for configuration management, application
deployment, task automation, and IT
orchestration.

Playbooks: YAML files that define the tasks to be
executed on managed nodes.

Inventory: A list of managed nodes (hosts) that
Ansible manages, typically defined in a file.

Modules: Reusable, standalone scripts that
Ansible uses to perform tasks on managed nodes.

Roles: A way to organize and reuse Ansible
playbooks. Roles group together related tasks,
variables, and handlers.

Terraform

Key Concepts

ansible --version

ansible all -m
ping -i inventory

ansible-playbook
playbook.yml -i

inventory

ansible-galaxy

install role_name

ansible-vault
encrypt file.yml

Check the Ansible
version.

Ping all hosts in the
inventory file.

Run an Ansible playbook
against the inventory.

Install a role from
Ansible Galaxy.

Encrypt a file using
Ansible Vault.

Common Commands

- hosts: webservers
become: true
tasks:
- name: Ensure Apache is installed
apt:
name: apache2
state: present
- name: Ensure Apache is running
service:
name: apache2

state: started

Example Configuration

Terraform: An infrastructure as code (laC) tool
that enables you to define and provision
infrastructure using a declarative configuration
language.

Providers: Plugins that allow Terraform to interact
with different infrastructure platforms (e.g., AWS,
Azure, GCP).

Resources: Components of your infrastructure,
such as virtual machines, networks, and
databases.

Modules: Reusable and composable units of
Terraform configuration, similar to functions in
programming.

State: Terraform uses a state file to track the
current configuration of your infrastructure.

Page 1 of 2

terraform
init
terraform
plan
terraform
apply
terraform

destroy

terraform

show

Initialize a Terraform working
directory.

Show changes required by the
current configuration.

Apply the changes to the
infrastructure.

Destroy the infrastructure
managed by Terraform.

Inspect the current Terraform
state.

terraform {

required_providers {

aws = {
source = "hashicorp/aws"
version = "~> 4.,0"

provider "aws" {

region = "us-west-2"

resource "aws_instance" "example" {
ami = "ami-

0c55b9479a3c8c88c" # Example AMI

instance_type = "t2.micro"
tags = {

Name = "ExampleInstance"
}

https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/637-devops-deployment-tools-cheatsheet
http://cheatsheetshero.com/user/all/637-devops-deployment-tools-cheatsheet
http://cheatsheetshero.com/user/all/637-devops-deployment-tools-cheatsheet
https://cheatsheetshero.com/

Kubernetes Deployments

Core Components

Common kubectl Commands

Example Deployment YAML

Deployment: Manages the desired state of your
application by ensuring the specified number of
replicas are running.

Pod: The smallest deployable unit in Kubernetes,
representing a single instance of a running
process.

Service: An abstraction that defines a logical set
of Pods and a policy by which to access them.

Namespace: A way to divide cluster resources
between multiple users or teams.

Ingress: Manages external access to the services
in a cluster, typically via HTTP.

Jenkins

Key Features

kubectl apply -f Apply a configuration file
to create or update

resources.

deployment.yaml

kubectl get
deployments

List all deployments in
the current namespace.

Show detailed
information about a
deployment.

kubectl describe
deployment
<deployment-name>

Scale the number of
replicas in a deployment.

kubectl scale
deployment
<deployment-name> -
-replicas=<number>

kubectl delete Delete a deployment.
deployment

<deployment-name>

Pipeline Syntax

apiVersion: apps/vi
kind: Deployment
metadata:
name: nginx-deployment
spec:
replicas: 3
selector:
matchLabels:
app: nginx
template:
metadata:
labels:
app: nginx
spec:
containers:
- name: nginx
image: nginx:1.14.2
ports:

- containerPort: 80

Example Jenkinsfile

Jenkins: An open-source automation server. It
helps automate the parts of software
development related to building, testing, and
deploying, facilitating continuous integration and
continuous delivery.

Pipelines: Jenkins pipelines allow you to define
your entire build, test, and deployment process as
code.

Plugins: Jenkins has a wide variety of plugins
available to extend its functionality, such as
integrations with source control systems, build
tools, and deployment platforms.

Jobs: Automated tasks or series of tasks defined
within Jenkins to perform specific actions such as
building or deploying applications.

Nodes/Agents: Machines or containers that
Jenkins uses to execute build jobs.

Page 2 of 2

pipelin Defines the overall pipeline structure.
e { ...
}
agent { Specifies where the pipeline will
.} execute (e.g., any node, a specific
label).
stages Defines the different stages of the
{ cao B pipeline.
steps { Contains the actual commands to
o B execute in each stage.
post { Defines actions to be performed
.3 after the pipeline, regardless of the

outcome.

pipeline {
agent any
stages {
stage('Build') {
steps {

echo 'Building...'

}
stage('Test') {
steps {

echo 'Testing...'

}
stage('Deploy') {
steps {

echo 'Deploying...'

https://cheatsheetshero.com

https://cheatsheetshero.com/

