
Refactoring Cheat Sheet
A concise cheat sheet covering essential refactoring techniques, principles, and tools for improving code quality and maintainability.

Core Principles

Key Refactoring Techniques

Simplifying Conditional Expressions

Dealing with Inheritance

Definition

Refactoring: Improving the internal structure of

existing code without changing its external

behavior.

Benefits

Improved Design Easier to understand,

modify, and extend the

code.

Reduced

Complexity

Simplifies code, making it

less prone to errors.

Enhanced

Maintainability

Reduces the cost of future

development and bug fixes.

Increased

Performance

Can sometimes improve

code execution speed.

When to Refactor

The Rule of Three: Refactor after you’ve

done something similar three times.

When Adding Functionality: Refactor to

make it easier to add new features.

When Fixing a Bug: Refactor to prevent

similar bugs in the future.

During Code Review: Identify areas that can

be improved.

Composing Methods

Extract

Method

Create a new method from a

code fragment.

Example: Isolating a complex

calculation into its own

function.

Inline Method Replace a method call with the

method’s content.

Example: Removing a simple

method that doesn’t add value.

Replace Temp

with Query

Replace a temporary variable

with a method.

Example: Calculating a value on

demand instead of storing it.

Moving Features Between Objects

Move

Method

Move a method to another class that

it uses more.

Example: Moving a method that uses

more features of another class to

that class.

Move

Field

Move a field to another class that it

is used by.

Example: Moving a field to the class

where it’s primarily accessed.

Extract

Class

Create a new class and move related

fields and methods from an existing

class.

Example: Separating UI logic from

business logic.

Inline

Class

Move all features from a class into

another.

Example: When a class is no longer

complex enough to warrant its own

existence.

Organizing Data

Replace Data Value

with Object

Replace a data value with

an object.

Example: Using an object

to represent a simple

value like a phone number

or zip code.

Change Value to

Reference

Change a value object to

a reference object.

Example: Using a single

Customer object instead

of creating new ones with

the same data.

Change

Unidirectional

Association to

Bidirectional

Add a back pointer in

association.

Example: Making parent

and child objects aware of

each other.

Decompose Conditional

Description Separate the ‘then’ and ‘else’ parts

of a conditional into distinct

methods.

Motivation Improves readability and allows for

easier modification of individual

branches.

Example Turning a large if-else block into

smaller, named methods.

Consolidate Conditional Expression

Description Replace a sequence of conditional

expressions with a single

conditional expression.

Motivation Makes the code easier to

understand when multiple

conditions lead to the same result.

Example Combining several if statements

that return the same value.

Replace Nested Conditional with Guard

Clauses

Description Replace nested conditional

statements with guard clauses.

Motivation Makes the code more readable by

exiting early for special cases.

Example Using return statements at the

beginning of a method to handle

edge cases.

Pull Up Field

Description Move a field to the superclass.

Motivation Eliminates duplication when

subclasses have the same field.

Example Moving a common property like

name to the parent class.

Pull Up Method

Description Move a method to the superclass.

Motivation Avoids code duplication when

subclasses have similar methods.

Example Moving a calculateSalary

method to the parent class.

Page 1 of 2 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/644-refactoring-cheat-sheet
http://cheatsheetshero.com/user/all/644-refactoring-cheat-sheet
http://cheatsheetshero.com/user/all/644-refactoring-cheat-sheet
https://cheatsheetshero.com/

Push Down Method

Description Move a method from the

superclass to subclasses.

Motivation Allows specialized behavior in

subclasses without cluttering the

superclass.

Example Moving a specialized method like

displayImage to subclasses that

need it.

Replace Inheritance with Delegation

Description Create a field on the class that

refers to the original class and

delegate methods to it.

Motivation Reduces tight coupling between

classes and allows more flexible

composition.

Example Instead of inheriting behavior, use

an object of another class to

perform certain actions.

Page 2 of 2 https://cheatsheetshero.com

https://cheatsheetshero.com/

