
Version Control Cheatsheet
A comprehensive cheat sheet covering essential version control concepts, commands, and workflows with Git.

Git Basics

Branching and Merging

Remote Repositories

Core Concepts

Repository: A directory containing project files and a .git subdirectory

that stores the repository’s metadata, object database, and configuration.

Working Directory: The directory on your file system containing the actual

files you are working on. This is where you make changes.

Staging Area (Index): A file that stores information about the changes you

want to include in your next commit. Use git add to stage changes.

Commit: A snapshot of your repository at a specific point in time. Commits

have a unique ID (SHA-1 hash).

Branch: A movable pointer to a commit. Branches allow you to work on

different features or fixes without affecting the main codebase.

Remote: A repository hosted on another computer or server. Used for

collaboration and backups.

Basic Commands

git init Initializes a new Git repository in the current

directory.

git clone

<repository_url>

Clones a remote repository to your local

machine.

git status Displays the status of the working directory and

staging area.

git add <file> Adds a file to the staging area.

git commit -m "

<message>"

Commits the staged changes with a descriptive

message.

git log Shows the commit history of the repository.

Branch Management

git branch Lists all local branches. The

current branch is marked with an

asterisk (*).

git branch

<branch_name

>

Creates a new branch with the

specified name.

git

checkout

<branch_name

>

Switches to the specified

branch.

git

checkout -b

<branch_name

>

Creates a new branch and

switches to it.

git branch

-d

<branch_name

>

Deletes the specified branch (if

it has been merged).

git branch

-D

<branch_name

>

Force deletes the specified

branch (even if it hasn’t been

merged).

Merging Branches

git merge

<branch_nam

e>

Merges the specified branch into

the current branch.

git

mergetool

Opens a merge tool to resolve

conflicts manually.

git

commit

After resolving conflicts, commit

the merge.

git merge

--abort

Aborts the merge process and

returns to the state before the

merge.

Rebasing

Rebasing is an alternative to merging that

integrates changes from one branch into another

by moving or combining a sequence of commits

to a new base commit.

git rebase <branch_name> - Rebase the

current branch onto <branch_name> .

After resolving conflicts, use git rebase --

continue to proceed.

Use git rebase --abort to stop rebasing

process.

Working with Remotes

git remote add

<name> <url>

Adds a remote repository with a specified name and

URL.

git remote -v Lists all remote repositories with their URLs.

git remote remove

<name>

Removes the remote repository with the specified

name.

git fetch

<remote>

Fetches the latest changes from the remote

repository without merging them.

git pull <remote>

<branch>

Fetches and merges changes from a remote branch

into the current branch.

git push <remote>

<branch>

Pushes local commits to the remote branch.

Page 1 of 2 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/659-version-control-cheatsheet
http://cheatsheetshero.com/user/all/659-version-control-cheatsheet
http://cheatsheetshero.com/user/all/659-version-control-cheatsheet
https://cheatsheetshero.com/

Advanced Git

Collaboration Workflow

1. Clone the repository: git clone <repository_url>

2. Create a branch for your changes: git checkout -b

<feature_branch>

3. Make changes and commit them locally: git add . , git commit -m

"<descriptive_message>"

4. Push your branch to the remote repository: git push origin

<feature_branch>

5. Create a pull request on the remote repository.

6. After review and approval, your changes will be merged.

Stashing

git stash Temporarily saves changes that

you don’t want to commit

immediately.

git stash

list

Lists all stashed changesets.

git stash

apply

Applies the most recent stashed

changes.

git stash

apply

stash@{2}

Applies a specific stashed

changeset (e.g., the third one).

git stash

drop

Removes the most recent stashed

changes.

git stash

pop

Applies and removes the most

recent stashed changes.

Rewriting History

Warning: Rewriting history can cause issues if

you’re collaborating with others. Use with

caution.

git commit --amend - Modify the last commit

(e.g., to fix the commit message or add staged

changes).

git rebase -i <commit> - Interactive rebase,

allows you to edit, reorder, or squash commits.

Ignoring Files

.gitigno

re

A file that specifies intentionally

untracked files that Git should

ignore.

Example *.log - Ignores all files with the

.log extension.

/temp/ - Ignores the temp

directory at the root of the

repository.

Page 2 of 2 https://cheatsheetshero.com

https://cheatsheetshero.com/

