
Elasticsearch Cheat Sheet
A comprehensive cheat sheet for Elasticsearch, covering essential concepts, query syntax, API endpoints, and common operations.

Core Concepts & API Basics

Query DSL (Domain Specific Language)

Key Concepts

Index A collection of documents with

similar characteristics. Think of it as

a database.

Document A JSON document containing fields

and their values. It’s the basic unit of

information.

Field A key-value pair within a document.

The key is the field name and the

value is the data.

Mapping Defines how a document and its

fields are stored and indexed. Like a

schema.

Shard Indexes are divided into shards.

Each shard is a fully-functional and

independent “index” that can be

hosted on any node in an

Elasticsearch cluster.

Replica A copy of a shard. Replicas provide

redundancy and increase search

capacity.

Basic API Endpoints

PUT /<index_name> - Create an index.

GET /<index_name> - Retrieve index

information.

DELETE /<index_name> - Delete an index.

POST /<index_name>/_doc - Index a document.

Elasticsearch will assign an ID.

PUT /<index_name>/_doc/<_id> - Index or

update a document with a specific ID.

GET /<index_name>/_doc/<_id> - Retrieve a

document by ID.

POST /<index_name>/_search - Search

documents within an index.

Common HTTP Methods

GET Retrieve information.

POST Create a new resource or perform an

action (e.g., search).

PUT Create or update a resource at a

specific ID. Replaces the entire

document.

DELETE Delete a resource.

Basic Query Structure

The Query DSL is based on JSON. The basic

structure is:

{

 "query": {

 "<query_type>": {

 "<field_name>": {

 "<parameter>": "<value>"

 }

 }

 }

}

Match Query

match Analyzes the query and constructs a

boolean query. Good for full-text

search.

{

 "query": {

 "match": {

 "title": "quick brown

fox"

 }

 }

}

match_

phrase

Matches exact phrases. The terms

must be in the specified order.

{

 "query": {

 "match_phrase": {

 "message": "this is a

test"

 }

 }

}

match_

all

Matches all documents. Useful for

retrieving all documents in an index.

{

 "query": {

 "match_all": {}

 }

}

Term Query

ter

m

Finds documents that contain the exact

term specified. Not analyzed.

{

 "query": {

 "term": {

 "user.id": "kimchy"

 }

 }

}

ter

ms

Finds documents that contain one or

more of the exact terms specified.

{

 "query": {

 "terms": {

 "user.id": ["kimchy",

"jordan"]

 }

 }

}

Page 1 of 5 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/665-elasticsearch-cheat-sheet
http://cheatsheetshero.com/user/all/665-elasticsearch-cheat-sheet
http://cheatsheetshero.com/user/all/665-elasticsearch-cheat-sheet
https://cheatsheetshero.com/

Boolean Query

bo

ol

A query that matches documents matching

boolean combinations of other queries.

Uses must , should , must_not , and

filter clauses.

{

 "query": {

 "bool": {

 "must": [

 { "match": { "title":

"brown" } }

],

 "filter": [

 { "term": { "tags":

"search" } }

],

 "must_not": [

 { "range": { "date": {

"gte": "2024-01-01" } } }

],

 "should": [

 { "term": { "license":

"pro" } }

],

 "minimum_should_match": 1

 }

 }

}

mu

st

The clause (query) must appear in matching

documents and will contribute to the score.

sh

oul

d

The clause (query) should appear in the

matching document. If the bool query

contains no must or filter clauses,

then at least one should clause must

match. Contributes to the score.

mu

st_

no

t

The clause (query) must not appear in the

matching documents. Is executed in filter

context meaning that scoring is ignored

and the clause is considered for caching.

fi

lte

r

The clause (query) must appear in matching

documents. However unlike must the

score of the query will be ignored. Filter

clauses are executed in filter context,

meaning that scoring is ignored and the

clause is considered for caching.

Page 2 of 5 https://cheatsheetshero.com

https://cheatsheetshero.com/

Aggregations

Aggregation Basics

Aggregations allow you to compute statistics and

analytics over your data. They are similar to SQL

GROUP BY .

{

 "aggs": {

 "<aggregation_name>": {

 "<aggregation_type>": {

 "field": "<field_name>"

 }

 }

 }

}

You can nest aggregations.

Bucket Aggregations

terms Creates buckets based on unique

terms in a field.

{

 "aggs": {

 "popular_tags": {

 "terms": {

 "field":

"tags.keyword",

 "size": 10

 }

 }

 }

}

date_hist

ogram

Creates buckets based on date

intervals.

{

 "aggs": {

 "articles_per_month": {

 "date_histogram": {

 "field":

"publish_date",

"calendar_interval":

"month",

 "format": "yyyy-MM-

dd"

 }

 }

 }

}

range Creates buckets based on numeric

or date ranges.

{

 "aggs": {

 "price_ranges": {

 "range": {

 "field": "price",

 "ranges": [

 { "to": 50 },

 { "from": 50,

"to": 100 },

 { "from": 100 }

]

 }

 }

 }

}

Page 3 of 5 https://cheatsheetshero.com

https://cheatsheetshero.com/

Metric Aggregations

avg Calculates the average of a numeric

field.

{

 "aggs": {

 "avg_price": {

 "avg": {

 "field": "price"

 }

 }

 }

}

sum Calculates the sum of a numeric field.

{

 "aggs": {

 "total_sales": {

 "sum": {

 "field": "sales"

 }

 }

 }

}

min Calculates the minimum value of a

numeric field.

{

 "aggs": {

 "min_price": {

 "min": {

 "field": "price"

 }

 }

 }

}

max Calculates the maximum value of a

numeric field.

{

 "aggs": {

 "max_price": {

 "max": {

 "field": "price"

 }

 }

 }

}

card

inali

ty

Calculates the approximate number of

unique values in a field. Useful for

counting distinct users.

{

 "aggs": {

 "distinct_users": {

 "cardinality": {

 "field": "user_id"

 }

 }

 }

}

Page 4 of 5 https://cheatsheetshero.com

https://cheatsheetshero.com/

Mappings & Settings

Mapping Types

text Used for full-text search. Analyzed

into individual terms.

keyword Used for exact-value matching,

filtering, and sorting. Not analyzed.

date Stores dates. Can be formatted.

"format": "yyyy-MM-dd

HH:mm:ss||yyyy-MM-

dd||epoch_millis"

integer ,

long ,

float ,

double

Numeric types.

boolean Stores boolean values (true/false).

object Used for nested JSON objects.

nested Used for arrays of JSON objects.

Allows querying each object in the

array independently.

Explicit Mapping

You can define the mapping explicitly when

creating an index.

PUT /my_index

{

 "mappings": {

 "properties": {

 "title": { "type": "text" },

 "publish_date": { "type": "date",

"format": "yyyy-MM-dd" },

 "author_id": { "type": "keyword" }

 }

 }

}

If no mapping is defined, Elasticsearch will

attempt to infer the mapping dynamically

(Dynamic Mapping).

Index Settings

numb

er_of

_shar

ds

The number of primary shards an index

should have. Defaults to 1 in newer

versions. Can only be set at index

creation.

numb

er_of

_repl

icas

The number of replica shards each

primary shard should have. Defaults to 1.

Can be changed dynamically after index

creation.

PUT /my_index/_settings

{

 "number_of_replicas": 2

}

anal

ysis

Configures analyzers, tokenizers, token

filters, and character filters for text

analysis. Allows for customizing how

text is indexed and searched.

Page 5 of 5 https://cheatsheetshero.com

https://cheatsheetshero.com/

