CHEAT Asynchronous Programming Cheat Sheet

SH EETS A concise guide to asynchronous programming concepts, tools, and best practices, covering various languages and frameworks.

Core Concepts

Fundamentals Key Components Use Cases
Asynchronous Programming: A programming Promises/Futures Represent the eventual result = 1/O Operations: Network requests, file
model that allows multiple tasks to run of an asynchronous system access.
concurrently without blocking the main thread. operation. Provide methods + GUI Applications: Keeping the Ul responsive
. o) to handle success or failure. while performing long-running tasks.
Key Benefit: Improves application responsiveness . . o .)
and performance, especially in 1/0-bound Callbacks Functions passed as * Real-time Appllcat|9ns. Handling multiple
operations. arguments to be executed concurrent connections or events.
. when an asynchronous - Data Processing: Processing large datasets
Concurrency vs. Parallelism: operation completes. Can without blocking the main thread.
« Concurrency: Managing multiple tasks at the lead to ‘callback hell’ if not
same time, not necessarily executing managed carefully.

simultaneously.
Async/Await Syntactic sugar built on top

of Promises (in many
languages) that makes
asynchronous code look and

behave more like
Blocking vs. Non-Blocking: synchronous code.

» Blocking: An operation that waits until it
completes before allowing other operations
to proceed.

» Parallelism: Executing multiple tasks
simultaneously, typically on multiple CPU
cores.

» Non-Blocking: An operation that returns
immediately, even if it hasn't completed,
allowing other operations to proceed.

JavaScript
Promises Async/Await Fetch API
A Promise represents the eventual completion async/await simplifies working with Promises. The fetch APIlis used for making network
(or failure) of an asynchronous operation. . . requests.
async function myFunction() {
const myPromise = new Promise((resolve, try { async function fetchbata() {
reject) => { const result = await myPromise; const response = await
setTimeout (() => { console.log(result); // Output: fetch('https://api.example.com/data');
resolve('Success!'); Success! const data = await response.json();
}, 1000); } catch (error) { console.log(data);
1) console.error(error); }
}
myPromise.then((result) => { } fetchData();

console.log(result); // Output:
Success! myFunction();
}).catch((error) => {

console.error(error);

i

Page 1 of 3 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/673-asynchronous-programming-cheat-sheet
http://cheatsheetshero.com/user/all/673-asynchronous-programming-cheat-sheet
http://cheatsheetshero.com/user/all/673-asynchronous-programming-cheat-sheet
https://cheatsheetshero.com/

Python

Asyncio Concurrency with Tasks

The asyncio library provides infrastructure for Tasks are used to run coroutines concurrently.
writing single-threaded concurrent code using

) import asyncio
coroutines.

import asyncio async def worker(name, queue):

while True:

async def my_coroutine(): # Get a "work item" out of the

await asyncio.sleep(1) queue

return 'Coroutine finished' delay = await queue.get()

print(f'{name}: working for

async def main(): {delay} seconds')

result = await my_coroutine() await asyncio.sleep(delay)

print(result) print(f'{name}: finished {delay}

seconds')

asyncio.run(main()) queue. task_done()

Async/Await Syntax async def main():

Create a queue that we will use to
Python uses async and await keywords for

defining and using coroutines.

store work items.
queue = asyncio.Queue()
async def fetch_data(url):
Asynchronously fetch data from a # Generate random timings and put
URL them into the queue.

await asyncio.sleep(l) # Simulate total_delay = 0
network delay for i in range(20):
return f"Data from {url}" delay = random.randint(1, 5)
total_delay += delay
async def main(): queue.put_nowait (delay)

taskl =
asyncio.create_task(fetch data("urli")) # Create three worker tasks to

task2 = process the queue concurrently.

asyncio.create_task(fetch_data("url2")) tasks = []

for i in range(3):

resultl = await taskl task =

result2 = await task2 asyncio.create_task(worker (f'worker-

{i}', queue))
print(resultl) tasks.append(task)
print(result2)

Wait until the queue is fully
asyncio.run(main()) processed.

await queue.join()

Cancel our worker tasks.
for task in tasks:
task.cancel()
Wait until all worker tasks are
cancelled.
await asyncio.gather(*tasks,

return_exceptions=True)

print(f'Finished in {total_delay}

seconds')

asyncio.run(main())

Page 2 of 3 https://cheatsheetshero.com

https://cheatsheetshero.com/

C#

Async and Await

Tasks

ConfigureAwait

C# uses async and await keywords for
asynchronous programming.

using System;

using System.Threading.Tasks;

public class Example
{

public static async Task
Main(string[] args)

{

Console.WriteLine("Starting...");
string result = await

GetResultAsync();
Console.WriteLine(result);

Console.WriteLine("Finished.");

public static async Task<string>
GetResultAsync()
{
await Task.Delay(2000); //
Simulate some work
return "Result from async
operation";

}

Page 3 of 3

The Task class represents an asynchronous
operation.

using System;

using System.Threading.Tasks;

public class Example
{
public static void Main(string[]
args)
{
Task<string> task =
Task.Run(async () =>
{
await Task.Delay(1000);

return "Task Completed";

1)

Console.WriteLine(task.Result);
// Blocking call
}

ConfigureAwait(false) prevents deadlocks in
Ul applications by avoiding the synchronization
context.

public async Task MyMethodAsync()
{
await
Task.Delay(1000).ConfigureAwait(false);
// Continue without needing the
original context

}

https://cheatsheetshero.com

https://cheatsheetshero.com/

