
Asynchronous Programming Cheat Sheet
A concise guide to asynchronous programming concepts, tools, and best practices, covering various languages and frameworks.

Core Concepts

JavaScript

Fundamentals

Asynchronous Programming: A programming

model that allows multiple tasks to run

concurrently without blocking the main thread.

Key Benefit: Improves application responsiveness

and performance, especially in I/O-bound

operations.

Concurrency vs. Parallelism:

Concurrency: Managing multiple tasks at the

same time, not necessarily executing

simultaneously.

Parallelism: Executing multiple tasks

simultaneously, typically on multiple CPU

cores.

Blocking vs. Non-Blocking:

Blocking: An operation that waits until it

completes before allowing other operations

to proceed.

Non-Blocking: An operation that returns

immediately, even if it hasn’t completed,

allowing other operations to proceed.

Key Components

Promises/Futures Represent the eventual result

of an asynchronous

operation. Provide methods

to handle success or failure.

Callbacks Functions passed as

arguments to be executed

when an asynchronous

operation completes. Can

lead to ‘callback hell’ if not

managed carefully.

Async/Await Syntactic sugar built on top

of Promises (in many

languages) that makes

asynchronous code look and

behave more like

synchronous code.

Use Cases

I/O Operations: Network requests, file

system access.

GUI Applications: Keeping the UI responsive

while performing long-running tasks.

Real-time Applications: Handling multiple

concurrent connections or events.

Data Processing: Processing large datasets

without blocking the main thread.

Promises

A Promise represents the eventual completion

(or failure) of an asynchronous operation.

const myPromise = new Promise((resolve,

reject) => {

 setTimeout(() => {

 resolve('Success!');

 }, 1000);

});

myPromise.then((result) => {

 console.log(result); // Output:

Success!

}).catch((error) => {

 console.error(error);

});

Async/Await

async/await simplifies working with Promises.

async function myFunction() {

 try {

 const result = await myPromise;

 console.log(result); // Output:

Success!

 } catch (error) {

 console.error(error);

 }

}

myFunction();

Fetch API

The fetch API is used for making network

requests.

async function fetchData() {

 const response = await

fetch('https://api.example.com/data');

 const data = await response.json();

 console.log(data);

}

fetchData();

Page 1 of 3 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/673-asynchronous-programming-cheat-sheet
http://cheatsheetshero.com/user/all/673-asynchronous-programming-cheat-sheet
http://cheatsheetshero.com/user/all/673-asynchronous-programming-cheat-sheet
https://cheatsheetshero.com/

Python

Asyncio

The asyncio library provides infrastructure for

writing single-threaded concurrent code using

coroutines.

import asyncio

async def my_coroutine():

 await asyncio.sleep(1)

 return 'Coroutine finished'

async def main():

 result = await my_coroutine()

 print(result)

asyncio.run(main())

Async/Await Syntax

Python uses async and await keywords for

defining and using coroutines.

async def fetch_data(url):

 # Asynchronously fetch data from a

URL

 await asyncio.sleep(1) # Simulate

network delay

 return f"Data from {url}"

async def main():

 task1 =

asyncio.create_task(fetch_data("url1"))

 task2 =

asyncio.create_task(fetch_data("url2"))

 result1 = await task1

 result2 = await task2

 print(result1)

 print(result2)

asyncio.run(main())

Concurrency with Tasks

Tasks are used to run coroutines concurrently.

import asyncio

async def worker(name, queue):

 while True:

 # Get a "work item" out of the

queue.

 delay = await queue.get()

 print(f'{name}: working for

{delay} seconds')

 await asyncio.sleep(delay)

 print(f'{name}: finished {delay}

seconds')

 queue.task_done()

async def main():

 # Create a queue that we will use to

store work items.

 queue = asyncio.Queue()

 # Generate random timings and put

them into the queue.

 total_delay = 0

 for i in range(20):

 delay = random.randint(1, 5)

 total_delay += delay

 queue.put_nowait(delay)

 # Create three worker tasks to

process the queue concurrently.

 tasks = []

 for i in range(3):

 task =

asyncio.create_task(worker(f'worker-

{i}', queue))

 tasks.append(task)

 # Wait until the queue is fully

processed.

 await queue.join()

 # Cancel our worker tasks.

 for task in tasks:

 task.cancel()

 # Wait until all worker tasks are

cancelled.

 await asyncio.gather(*tasks,

return_exceptions=True)

 print(f'Finished in {total_delay}

seconds')

asyncio.run(main())

Page 2 of 3 https://cheatsheetshero.com

https://cheatsheetshero.com/

C#

Async and Await

C# uses async and await keywords for

asynchronous programming.

using System;

using System.Threading.Tasks;

public class Example

{

 public static async Task

Main(string[] args)

 {

Console.WriteLine("Starting...");

 string result = await

GetResultAsync();

 Console.WriteLine(result);

 Console.WriteLine("Finished.");

 }

 public static async Task<string>

GetResultAsync()

 {

 await Task.Delay(2000); //

Simulate some work

 return "Result from async

operation";

 }

}

Tasks

The Task class represents an asynchronous

operation.

using System;

using System.Threading.Tasks;

public class Example

{

 public static void Main(string[]

args)

 {

 Task<string> task =

Task.Run(async () =>

 {

 await Task.Delay(1000);

 return "Task Completed";

 });

 Console.WriteLine(task.Result);

// Blocking call

 }

}

ConfigureAwait

ConfigureAwait(false) prevents deadlocks in

UI applications by avoiding the synchronization

context.

public async Task MyMethodAsync()

{

 await

Task.Delay(1000).ConfigureAwait(false);

 // Continue without needing the

original context

}

Page 3 of 3 https://cheatsheetshero.com

https://cheatsheetshero.com/

