

Discrete Mathematics Cheatsheet

A comprehensive cheat sheet covering key concepts in Discrete Mathematics, including set theory, logic, relations, graph theory, and combinatorics. This serves as a quick reference for definitions, formulas, and common problem-solving techniques.

Set Theory

Basic Definitions

Set	A well-defined collection of distinct objects, considered as an object in its own right.
Element	An object in a set. Denoted by \in (e.g., $x \in A$ means x is an element of set A).
Subset	A set A is a subset of B (A \subseteq B) if every element of A is also in B.
Proper Subset	A set A is a proper subset of B (A \subset B) if A \subseteq B and A \neq B.
Universal Set (U)	The set containing all elements under consideration.
Empty Set (Ø)	The set containing no elements. Also denoted by {}.

Set Operations

Union (∪)	$A \cup B = \{x \mid x \in A \text{ or } x \in B\}$
Intersection (\cap)	$A \cap B = \{x \mid x \in A \text{ and } x \\ \in B\}$
Difference (-)	A - B = $\{x \mid x \in A \text{ and } x \notin B\}$
Complement (A')	$A'=\{x\mid x\in U \text{ and } x\notin A\}$
Symmetric Difference (⊕)	$A \oplus B = (A - B) \cup (B - A)$
Cartesian Product (×)	$A \times B = \{(a, b) \mid a \in A and b \in B\}$

Set Identities

Identity Laws: $A \cup \emptyset = A$ $A \cap U = A$
Domination Laws: $A \cup U = U$ $A \cap \emptyset = \emptyset$
Idempotent Laws: $A \cup A = A$ $A \cap A = A$
Complementation Law: (A')' = A
Commutative Laws: $A \cup B = B \cup A$ $A \cap B = B \cap A$
Associative Laws: $A \cup (B \cup C) = (A \cup B) \cup C$ $A \cap (B \cap C) = (A \cap B) \cap C$

Logic

Propositional Logic

Proposition	A declarative statement that is either true or false, but not both.
Conjunction (ʌ)	p ∧ q is true if both p and q are true; otherwise, it is false.
Disjunction (∨)	p v q is true if either p or q (or both) are true; it is false only if both are false.
Negation (¬)	¬p is true if p is false, and false if p is true.
Implication (→)	p → q is false only when p is true and q is false; otherwise, it is true. Also called a conditional statement.
Biconditional (↔)	p ↔ q is true if p and q have the same truth value (both true or both false).

A subset of A \times B, where A and B are sets. Represents a relationship between elements

A relation from a set A to itself

A relation R on A is reflexive if (a,

A relation R on A is symmetric if

A relation R on A is transitive if

 $(a, b) \in R$ and $(b, c) \in R$ implies

 $(a, b) \in R$ implies $(b, a) \in R$.

of A and B.

 $(a, c) \in R.$

(a subset of A × A).

a) \in R for all a \in A.

Logical Equivalences

De Morgan's Laws: $\neg(p \land q) \equiv \neg p \lor \neg q$ $\neg(p \lor q) \equiv \neg p \land \neg q$

Distributive Laws: $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$ $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$

Implication Equivalence: $p \rightarrow q \equiv \neg p \lor q$

Biconditional Equivalence: $p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p)$

Commutative Laws: $p \land q \equiv q \land p$ $p \lor q \equiv q \lor p$

Associative Laws: $(p \land q) \land r \equiv p \land (q \land r)$ $(p \lor q) \lor r \equiv p \lor (q \lor r)$

Equivalence Relation	A relation that is reflexive, symmetric, and transitive.
Properties of F	Relations
Irreflexive : A reflexive R for all $a \in A$.	elation R on A is irreflexive if (a, a) ∉
Antisymmetric: A relation R on A is antisymmetric if (a, b) ∈ R and (b, a) ∈ R implies a = b.	
Partial Order : A relation that is reflexive, antisymmetric, and transitive.	
	partial order where for every a, $b \in R$ or (b, a) $\in R$.

Predicate Logic

Predicate	A statement involving variables. P(x) is the predicate P at x.
Quantifiers	Symbols that express the extent to which a predicate is true over a range of elements.
Universal Quantifier (∀)	$\forall x P(x)$ means $P(x)$ is true for all x in the domain.
Existential Quantifier (∃)	$\exists x P(x)$ means there exists at least one x in the domain for which P(x) is true.
Negation of Quantifiers	$\neg (\forall x P(x)) \equiv \exists x \neg P(x) \neg (\exists x P(x)) \equiv \forall x \neg P(x)$

Closures of Relations

Reflexive Closure	The smallest reflexive relation containing R. Add (a, a) for all a not already in the relation.
Symmetric Closure	The smallest symmetric relation containing R. If (a, b) ∈ R, add (b, a) to the relation.
Transitive Closure	The smallest transitive relation containing R. Computed using Warshall's Algorithm.

Relations

Relation

Binary

Relation

Reflexive

Relation Symmetric

Relation

Transitive

Relation

Basic Definitions

Graph Theory

Basic Definitions

Graph	A pair G = (V, E) where V is a set of vertices and E is a set of edges connecting these vertices.	Connected Graph : A graph where there is a path between every pair of vertices.	
D ¹ · · ·		Complete Graph (Kn): A graph where every pair	
Directed	A graph where edges have a	of distinct vertices is connected by an edge.	
Graph (Digraph)	direction. Edges are ordered pairs (u, v).	Cycle : A path that starts and ends at the same vertex.	
Undirected Graph	A graph where edges have no direction. Edges are unordered pairs {u, v}. Two vertices are adjacent if they are connected by an edge.	Tree: A connected graph with no cycles.	
Chapit		Bipartite Graph : A graph whose vertices can be divided into two disjoint sets U and V such that every edge connects a vertex in U to one in V.	
Adjacent Vertices			
	, , , , , , , , , , , , , , , , , , ,	Planar Graph: A graph that can be drawn in the	
Degree of a Vertex	The number of edges incident to the vertex. In digraphs, indegree	plane without any edges crossing.	
Veilex	is the number of incoming edges, and outdegree is the number of outgoing edges.		
Path	A sequence of vertices connected by edges.		

Graph Representations

Adjacency Matrix	A matrix representing the graph's connections. A[i][j] = 1 if there is an edge from vertex i to vertex j, and 0 otherwise.
Adjacency List	A list of adjacent vertices for each vertex in the graph.