
Turbo.js Cheatsheet
A comprehensive guide to Turbo.js, covering its core concepts, components, and usage patterns for building modern web applications with

enhanced speed and responsiveness.

Turbo Drive Fundamentals

Turbo Frames

Navigation & Page Updates

Turbo Drive: Automatically intercepts clicks on all

<a> tags and form submissions, preventing full

page loads.

Instead, Turbo Drive fetches the new page in the

background and updates the current page’s

<body> using morphdom .

Turbolinks-classic Compatibility: Turbo is

designed as a successor to Turbolinks. Many

concepts remain similar, but Turbo offers

significant improvements, including more robust

handling of JavaScript and asset loading.

No Configuration Needed: To enable Turbo Drive,

simply include the turbo.js file in your

application. It automatically enhances existing

links and forms.

Meta Tags: You can control Turbo Drive’s behavior

using meta tags in the <head> section of your

pages.

Example: <meta name="turbo-visit-control"

content="reload">

Page Visit Events

turbo:bef

ore-visit

Fired before Turbo Drive starts a

visit.

turbo:vis

it

Fired when Turbo Drive is about to

fetch a new page.

turbo:bef

ore-cache

Fired before Turbo Drive caches

the current page.

turbo:bef

ore-

render

Fired before Turbo Drive renders

the new page.

turbo:ren

der

Fired after Turbo Drive renders the

new page.

turbo:loa

d

Fired after Turbo Drive completes a

visit and the new page is visible.

Disabling Turbo Drive

You can disable Turbo Drive on specific links or

forms by adding the data-turbo="false"

attribute.

Example: <a href="/full_page_load" data-

turbo="false">Full Page Load

To disable Turbo Drive completely, remove the

turbo.js script from your application or set

Turbo.session.drive = false; .

Encapsulating Page Sections

Turbo Frames: Allow you to update specific parts

of a page without reloading the entire page. This

is achieved by wrapping sections of your HTML in

<turbo-frame> elements.

Lazy Loading: Turbo Frames can also be used for

lazy loading content. Content within a frame is

only loaded when the frame is scrolled into view

(or when explicitly triggered).

Frame Attributes

i

d

A unique identifier for the frame. Required

for Turbo to target and update the frame.

sr

c

The URL to load the frame’s content from.

The content fetched from this URL will

replace the frame’s current content.

ta

rge

t

Specifies the id of another Turbo Frame

to update after a form submission or link

click within the current frame. This allows

you to chain updates across multiple

frames.

Basic Frame Example

<turbo-frame id="user_profile">

 Loading user profile...

</turbo-frame>

<script>

 fetch('/users/123')

 .then(response => response.text())

 .then(html => {

document.getElementById('user_profile').

innerHTML = html;

 });

</script>

In a Rails-like backend, a corresponding

users#show action might render a partial that

replaces the user_profile frame’s contents.

Frame Events

turbo:frame

-load

Fired after a Turbo Frame has

loaded its content.

turbo:frame

-render

Fired after a Turbo Frame has

rendered the content

Page 1 of 2 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/708-turbo-js-cheatsheet
http://cheatsheetshero.com/user/all/708-turbo-js-cheatsheet
http://cheatsheetshero.com/user/all/708-turbo-js-cheatsheet
https://cheatsheetshero.com/

Turbo Streams

Advanced Turbo Techniques

Asynchronous DOM Updates

Turbo Streams: Deliver asynchronous DOM

updates over WebSocket connections or server-

sent events. Streams are particularly useful for

real-time applications or scenarios where server-

side events need to be reflected in the client-side

UI immediately.

Stream Actions: Turbo Streams use actions like

append , prepend , replace , update , and

remove to modify the DOM.

Stream Message Format

Turbo Stream messages are typically sent as

HTML fragments containing <turbo-stream>

elements. These elements specify the action to

perform and the target element to modify.

Example:

<turbo-stream action="append"

target="messages">

 <template>

 <div>New message!</div>

 </template>

</turbo-stream>

The target attribute specifies the id of the

element to modify. The content within the

<template> tag is used to perform the action.

Stream Actions

appe

nd

Appends the content to the end of the

target element.

prep

end

Prepends the content to the beginning

of the target element.

repl

ace

Replaces the entire target element with

the content.

upda

te

Replaces the content within the target

element with the content.

remo

ve

Removes the target element from the

DOM.

Using `data-turbo-stream`

You can trigger Turbo Stream updates directly

from links and forms using the data-turbo-

stream attribute. When a link or form with this

attribute is clicked or submitted, Turbo will expect

the server to return a Turbo Stream response.

Example:

<form action="/comments" method="post"

data-turbo-stream="true">

 ...

</form>

Redirects and Turbo

When handling form submissions with Turbo, you

can return a redirect response. Turbo Drive will

automatically follow the redirect and update the

page.

If you need to perform additional actions after

the redirect, you can use the turbo:load event.

JavaScript Considerations

Since Turbo Drive prevents full page loads, you

need to ensure that your JavaScript code is

compatible with Turbo. Use event delegation to

attach event listeners to elements that may be

replaced during Turbo Drive updates.

Example:

document.addEventListener('turbo:load',

() => {

 document.addEventListener('click',

'.my-element', (event) => {

 // Handle click event

 });

});

Caching

Turbo Drive caches pages to improve

performance. You can control caching behavior

using meta tags and server-side headers. Use

turbo:before-cache event to modify the page

before caching.

Page 2 of 2 https://cheatsheetshero.com

https://cheatsheetshero.com/

