
Regular Expressions (Regex) Basics Cheatsheet
A quick reference guide to the fundamental concepts and syntax of regular expressions, covering patterns, metacharacters, and common use cases.

Character Matching

Quantifiers

Anchors and Grouping

Flags (Modes)

Basic Characters

character Matches the literal character. For example, a matches ‘a’.

. (dot) Matches any single character except newline (\n).

\d Matches any digit (0-9).

\w Matches any word character (a-z, A-Z, 0-9, and underscore).

\s Matches any whitespace character (space, tab, newline).

\D Matches any non-digit character.

\W Matches any non-word character.

\S Matches any non-whitespace character.

Character Sets

[abc] Matches any single character in the set (a, b, or c).

[^abc] Matches any single character not in the set (anything but a,

b, or c).

[a-z] Matches any lowercase letter (a to z).

[0-9] Matches any digit (0 to 9).

[a-zA-Z0-

9_]

Matches any alphanumeric character or underscore (same

as \w).

[] Matches a space character inside a character set.

Quantifier Basics

* Matches the preceding character or group zero or more times.

+ Matches the preceding character or group one or more times.

? Matches the preceding character or group zero or one time

(optional).

{n} Matches the preceding character or group exactly n times.

{n,} Matches the preceding character or group n or more times.

{n,m

}

Matches the preceding character or group between n and m times

(inclusive).

Greedy vs. Lazy Matching

Greedy By default, quantifiers are greedy, meaning they match the

longest possible string.

Lazy

(Reluctant)

Adding ? after a quantifier makes it lazy, matching the

shortest possible string.

Example: .*?

Example Given the string 'aabbbbcc' , the regex a.*b will match

'aabbbb' (greedy),

while a.*?b will match 'aab' (lazy).

Anchors

^ Matches the beginning of the string (or

line, if multiline mode is enabled).

$ Matches the end of the string (or line, if

multiline mode is enabled).

\

b

Matches a word boundary (the position

between a word character and a non-word

character).

\

B

Matches a non-word boundary.

Grouping and Capturing

() Groups characters together and

captures the matched group.

Example: (abc)+ matches one or more

occurrences of ‘abc’.

\1 ,

\2 ,

etc.

Backreferences to captured groups. \1

refers to the first captured group, \2

to the second, and so on.

Example: (.)abc\1 matches ‘zabcz’.

(?:.

..)

Non-capturing group. Groups characters

together without capturing the matched

group. Useful for applying quantifiers or

alternations.

Example: (?:abc)+ matches one or

more occurrences of ‘abc’ but doesn’t

capture the group.

Alternation

| Matches either the expression before or

after the | .

Example: cat|dog matches either ‘cat’ or

‘dog’.

Page 1 of 2 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/714-regular-expressions-regex-basics-cheatsheet
http://cheatsheetshero.com/user/all/714-regular-expressions-regex-basics-cheatsheet
http://cheatsheetshero.com/user/all/714-regular-expressions-regex-basics-cheatsheet
https://cheatsheetshero.com/

Common Flags

i Case-insensitive matching. Matches both uppercase and lowercase

letters.

g Global matching. Finds all matches rather than stopping after the first.

m Multiline mode. ^ and $ match the start and end of each line, rather

than the entire string.

s Dotall mode. Allows the dot (.) to match newline characters as well.

x Verbose mode. Allows whitespace and comments in the regex for

better readability.

Using Flags

Flags are often specified at the end of the regex pattern, e.g., /pattern/i

for case-insensitive matching.

In some languages, flags can be specified inline within the regex using the

(?flag) syntax, e.g., (?i)pattern .

Page 2 of 2 https://cheatsheetshero.com

https://cheatsheetshero.com/

