
NativeScript Cheatsheet
A quick reference guide for NativeScript, covering core concepts, UI elements, data binding, and common tasks.

Core Concepts

UI Elements

Application Structure

NativeScript applications are structured with a

app directory at the root. This directory

contains the application’s core components.

Key files and directories include:

app.ts or app.js : The main application

file, responsible for bootstrapping the

application.

package.json : Contains metadata about

the application, dependencies, and build

configurations.

App_Resources : Platform-specific

resources (icons, splash screens) for Android

and iOS.

components : Directory for reusable UI

components.

views : Directory for individual pages or

screens of the application.

NativeScript uses XML, CSS, and

JavaScript/TypeScript to define the UI and logic

of the application.

XML: Defines the UI layout using

NativeScript’s UI elements.

CSS: Styles the UI elements.

JavaScript/TypeScript: Handles application

logic and data binding.

Modules and Plugins

Modules: NativeScript utilizes modules for

extending the core functionality.

Modules are typically installed via

npm.

Example:

npm install @nativescript/core

Plugins: Plugins provide access to native

device features and third-party

libraries. They are also installed via

npm and often require platform-

specific configuration.

Example:

npm install

@nativescript/camera

Application Lifecycle

NativeScript applications go through a lifecycle

similar to other mobile apps. Key events include:

launch: When the application starts.

suspend: When the application is sent to the

background.

resume: When the application is brought

back to the foreground.

exit: When the application is terminated.

These events can be handled in the app.ts or

app.js file using the application module.

Example:

import * as application from

'@nativescript/core/application';

application.on(application.launchEvent,

(args) => {

 console.log('Application launched');

});

Layouts

StackL

ayout

Arranges children in a single line, either

horizontally or vertically.

GridLa

yout

Arranges children in a grid using rows

and columns.

Flexbo

xLayou

t

Arranges children using flexbox

properties, offering flexible and

responsive layouts.

Absolu

teLayou

t

Positions children using absolute

coordinates.

DockLa

yout

Docks children to the edges of the

layout.

Basic UI Components

Label Displays text. Supports basic

formatting and styling.

Button A clickable button. Handles tap

events.

TextFi

eld

Allows single-line text input.

TextVi

ew

Allows multi-line text input.

Image Displays an image from a local file or

URL.

ListVi

ew

Displays a scrollable list of items.

Styling

UI elements are styled using CSS. NativeScript

supports a subset of CSS properties, including:

color

background-color

font-size

font-family

margin

padding

border-width

border-color

CSS can be applied inline, in a separate CSS file,

or using platform-specific CSS files (e.g.,

app.android.css , app.ios.css).

Page 1 of 2 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/718-nativescript-cheatsheet
http://cheatsheetshero.com/user/all/718-nativescript-cheatsheet
http://cheatsheetshero.com/user/all/718-nativescript-cheatsheet
https://cheatsheetshero.com/

Data Binding

Common Tasks

Basic Data Binding

NativeScript supports data binding, allowing UI

elements to be dynamically updated based on

data changes. Data binding is typically used with

MVVM (Model-View-ViewModel) architecture.

Data binding is defined in the XML using the {{

}} syntax.

Example:

In the code-behind (e.g., TypeScript file), the

myText property is defined in the ViewModel.

<Label text="{{ myText }}" />

import { Observable } from

'@nativescript/core';

class MyViewModel extends Observable {

 constructor() {

 super();

 this.myText = 'Hello, NativeScript!';

 }

}

Two-Way Data Binding

Two-way data binding allows changes in the UI to

update the underlying data, and vice versa. This is

typically used with input elements like

TextField .

Two-way data binding is defined using the bind

attribute.

Example:

Changes made in the TextField will update the

myText property in the ViewModel.

<TextField text="{{ myText, mode=TwoWay

}}" />

Event Binding

Event binding allows UI events (e.g., button tap)

to trigger methods in the ViewModel.

Event binding is defined using the tap attribute

(or other relevant event).

Example:

In the ViewModel:

<Button text="Tap Me" tap="{{ onTap }}"

/>

import { Observable } from

'@nativescript/core';

class MyViewModel extends Observable {

 onTap() {

 console.log('Button tapped!');

 }

}

Navigation

Using

Frame

Navigation in NativeScript is typically

handled using the Frame

component. The Frame is a container

that holds the navigation history. You

can navigate between pages using

frame.navigate() .

import { Frame } from

'@nativescript/core';

Frame.topmost().navigate('path/

to/newPage');

Passing

Data

Data can be passed during navigation

using the context property in the

navigate options.

In the destination page, access the

data using

page.navigationContext .

Frame.topmost().navigate({

 moduleName: 'path/to/newPage',

 context: { myData: 'Hello' }

});

HTTP Requests

Making HTTP requests is done using the

@nativescript/core/http module.

Example:

Common methods include GET , POST , PUT ,

and DELETE .

import * as http from

'@nativescript/core/http';

http.request({

 url: 'https://api.example.com/data',

 method: 'GET'

}).then((response) => {

console.log(response.content.toString())

;

}, (error) => {

 console.error(error);

});

Platform-Specific Code

NativeScript allows writing platform-specific

code using the platform module.

Example:

This allows you to use native APIs and features

that are specific to each platform.

import * as platform from

'@nativescript/core/platform';

if (platform.isAndroid) {

 console.log('Running on Android');

} else if (platform.isIOS) {

 console.log('Running on iOS');

}

Page 2 of 2 https://cheatsheetshero.com

https://cheatsheetshero.com/

