
FuelPHP Cheatsheet
A quick reference guide for FuelPHP, a simple, flexible, community driven PHP 5.3+ framework, based on best practices and loaded with powerful

features.

Core Concepts & Configuration

Controllers, Models & Views

Routing & URI Handling

Key Concepts

HMVC (Hierarchical Model-View-Controller):

FuelPHP extends the traditional MVC pattern to

HMVC, promoting modularity and reusability of

code.

ORM (Object-Relational Mapper): Provides an

ActiveRecord implementation for easy database

interaction.

Security: Built-in CSRF protection, input filtering,

and output encoding to prevent common web

vulnerabilities.

Bundles: Reusable packages of code that can be

easily integrated into FuelPHP applications.

Modules: Self-contained applications within a

FuelPHP project, enabling code organization and

separation of concerns.

Configuration Files

confi

g.php

Main application configuration file.

Located in fuel/app/config/ .

route

s.php

Defines URL routes. Located in

fuel/app/config/ .

db.ph

p

Database connection settings. Located

in fuel/app/config/ .

autol

oad.ph

p

Specifies classes and packages to

automatically load. Located in

fuel/app/config/ .

Environment Configuration

FuelPHP supports environment-specific

configurations (development, production,

testing).

Configuration files are loaded in the following

order:

1. fuel/app/config/config.php

2. fuel/app/config/{environment}/config.p

hp (overrides defaults)

Controllers

Controllers handle user requests and interact with

models to retrieve or modify data.

They then pass data to views for rendering.

Example:

class Controller_Users extends

Controller

{

 public function action_index()

 {

 $data['users'] =

Model_User::find_all();

 return

View::forge('users/index', $data);

 }

}

Models

Models represent data and provide methods for

interacting with the database.

FuelPHP uses an ActiveRecord ORM.

Example:

class Model_User extends Orm\Model

{

 protected static $_properties =

array(

 'id',

 'username',

 'password',

 'email',

);

}

Views

Views are responsible for rendering data provided

by controllers into HTML or other formats.

Example (fuel/app/views/users/index.php):

<h1>Users</h1>

<?php foreach ($users as $user): ?>

 <?php echo $user->username; ?>

<?php endforeach; ?>

Use View::forge() to create a view instance in

your controller.

Basic Routing

Routes define how URLs are mapped to

controllers and actions. Defined in

fuel/app/config/routes.php .

Example:

return array(

 '_root_' => 'welcome/index', //

The default route

 '_404_' => 'welcome/404', //

The main 404 route

 'hello/(:any)' =>

array('welcome/hello', 'name' => '$1'),

);

Named Parameters

You can use named parameters in your routes.

Example:

'users/:id' => 'users/view/$id'

URI Class

URI::base() Returns the base URL of the

application.

URI::current

()

Returns the current URI.

URI::segment

($n)

Returns the nth segment of the

URI.

Page 1 of 2 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/721-fuelphp-cheatsheet
http://cheatsheetshero.com/user/all/721-fuelphp-cheatsheet
http://cheatsheetshero.com/user/all/721-fuelphp-cheatsheet
https://cheatsheetshero.com/

ORM & Database

Basic ORM Usage

FuelPHP’s ORM simplifies database interactions.

Remember to configure your database settings in

fuel/app/config/db.php .

Example (Retrieving Data):

$user = Model_User::find(1);

echo $user->username;

Example (Creating Data):

$user = Model_User::forge(array(

 'username' => 'newuser',

 'password' => 'password123',

 'email' => 'newuser@example.com',

));

$user->save();

Relationships

FuelPHP supports various relationship types

(one-to-one, one-to-many, many-to-many).

Example (One-to-Many in Model_User):

protected static $_has_many =

array('posts' => array(

 'model_to' => 'Model_Post',

 'key_from' => 'id',

 'key_to' => 'user_id',

));

Now you can access the user’s posts:

$user = Model_User::find(1);

foreach ($user->posts as $post) {

 echo $post->title;

}

Query Builder

For more complex queries, you can use the Query

Builder.

Example:

$query = DB::select('id', 'username')

 ->from('users')

 ->where('username', 'like',

'%admin%')

 ->order_by('id', 'desc')

 ->limit(10);

$result = $query->execute();

foreach ($result as $row) {

 echo $row['username'];

}

Page 2 of 2 https://cheatsheetshero.com

https://cheatsheetshero.com/

