
Boost C++ Libraries Cheat Sheet
A quick reference for commonly used Boost C++ libraries, providing concise information on their purpose, usage, and key features.

Smart Pointers

Boost.Asio

Overview

Boost Smart Pointers provide automatic memory

management, preventing memory leaks and

simplifying resource handling.

They act like regular pointers but automatically

deallocate the memory they point to when no

longer in use.

Types of Smart Pointers

sco

ped_

ptr

Unique ownership. The object is

automatically deleted when the

scoped_ptr goes out of scope. Not

copyable.

sha

red_

ptr

Shared ownership. The object is deleted

when the last shared_ptr pointing to it

goes out of scope. Thread-safe reference

counting.

wea

k_pt

r

A non-owning observer of a

shared_ptr . It can be used to detect if

the object managed by the shared_ptr

is still alive.

uni

que_

ptr

C++11 and later. Replaces scoped_ptr

with more features and move semantics.

Example Usage

#include <boost/smart_ptr.hpp>

#include <iostream>

int main() {

 boost::shared_ptr<int> ptr(new

int(10));

 std::cout << *ptr << std::endl; //

Output: 10

 return 0;

}

#include <boost/scoped_ptr.hpp>

void foo() {

 boost::scoped_ptr<int> ptr(new

int(20));

 // Memory is automatically released

when ptr goes out of scope.

}

Overview

Boost.Asio is a cross-platform C++ library for

network and low-level I/O programming.

It provides an asynchronous model, allowing for

efficient handling of multiple concurrent

connections.

Key Components

io_co

ntext

The core of Asio, providing the event

loop for asynchronous operations.

socke

ts

Classes for creating and managing

network sockets (e.g., TCP, UDP).

buffe

rs

Classes for representing data buffers

used in I/O operations.

timer

s

Classes for creating and managing

asynchronous timers.

Example: Simple TCP Server

#include <boost/asio.hpp>

#include <iostream>

using boost::asio::ip::tcp;

int main() {

 try {

 boost::asio::io_context io_context;

 tcp::acceptor acceptor(io_context,

tcp::endpoint(tcp::v4(), 1234));

 tcp::socket socket(io_context);

 acceptor.accept(socket);

 std::cout << "Client connected." <<

std::endl;

 } catch (std::exception& e) {

 std::cerr << "Exception: " <<

e.what() << std::endl;

 }

 return 0;

}

Page 1 of 2 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/741-boost-c-libraries-cheat-sheet
http://cheatsheetshero.com/user/all/741-boost-c-libraries-cheat-sheet
http://cheatsheetshero.com/user/all/741-boost-c-libraries-cheat-sheet
https://cheatsheetshero.com/

Boost.Filesystem

Boost.Serialization

Overview

Boost.Filesystem provides portable facilities to

manipulate files and directories.

It abstracts away platform-specific details,

allowing for consistent file system operations

across different operating systems.

Key Classes and Functions

path Represents a file or directory

path.

exists(path

)

Checks if a file or directory

exists at the given path.

create_direc

tory(path)

Creates a new directory at the

given path.

remove(path

)

Removes a file or directory.

Example: Checking File Existence

#include <boost/filesystem.hpp>

#include <iostream>

namespace fs = boost::filesystem;

int main() {

 fs::path p("example.txt");

 if (fs::exists(p)) {

 std::cout << "File exists." <<

std::endl;

 } else {

 std::cout << "File does not exist."

<< std::endl;

 }

 return 0;

}

Overview

Boost.Serialization enables serializing C++ data

structures to various formats (e.g., binary, XML)

and deserializing them back.

It simplifies the process of saving and loading

complex objects.

Key Concepts

seriali

ze

function

A member function (or a free

function) that defines how an object

is serialized and deserialized.

Archive A class that handles the actual

serialization/deserialization process

(e.g., binary_oarchive ,

xml_oarchive).

Example: Serializing a Class

#include

<boost/serialization/serialization.hpp>

#include

<boost/serialization/binary_archive.hpp>

#include <fstream>

class MyData {

public:

 int x;

 double y;

 template <class Archive>

 void serialize(Archive & ar, const

unsigned int version)

 {

 ar & x;

 ar & y;

 }

};

int main() {

 MyData data = {5, 3.14};

 std::ofstream ofs("data.bin");

 boost::archive::binary_oarchive

ar(ofs);

 ar << data;

 return 0;

}

Page 2 of 2 https://cheatsheetshero.com

https://cheatsheetshero.com/

