
Shell Scripting Cheatsheet
A quick reference guide to shell scripting, covering essential syntax, commands, and best practices for automating tasks in Unix-like environments.

Basic Syntax & Structure

Control Flow

Script Structure

Every shell script starts with a shebang line to

specify the interpreter:

#!/bin/bash

Followed by comments, variables, and

commands.

Comments are denoted by # .

Example:

This is a comment

Variables are assigned using = without spaces.

Example:

NAME="John Doe"

echo $NAME

Variables

$VAR or

${VAR}

Accessing a variable’s value.

${VAR} is useful for variable

expansion.

Example:

echo "Hello, ${NAME}!"

$0 Name of the script.

$1, $2,

...

Arguments passed to the script.

$# Number of arguments passed to

the script.

$@ or $* All arguments as a single string or

separate words.

$? Exit status of the last executed

command.

Input/Output

echo - Displays text.

Example:

echo "Hello, world!"

read - Reads input from the user.

Example:

read -p "Enter your name: " NAME

> - Redirects output to a file (overwrites).

Example:

echo "Hello" > file.txt

>> - Redirects output to a file (appends).

Example:

echo "Hello" >> file.txt

< - Redirects input from a file.

Example:

wc -l < file.txt

Conditional Statements

if [condition]; then commands elif [

condition]; then commands else commands

fi

Example:

if [$AGE -gt 18]; then

 echo "Adult"

elif [$AGE -lt 13]; then

 echo "Child"

else

 echo "Teenager"

fi

Looping

for VAR in item1

item2 ...; do

commands done

Iterates over a list of

items.

Example:

for i in 1 2 3; do

 echo $i

done

while [condition

]; do commands

done

Executes commands

while a condition is true.

Example:

i=0

while [$i -lt 5];

do

 echo $i

 i=$((i+1))

done

until [condition

]; do commands

done

Executes commands

until a condition is true.

Example:

i=0

until [$i -ge 5];

do

 echo $i

 i=$((i+1))

done

Case Statements

case VAR in pattern1) commands ;;

pattern2) commands ;; *) commands ;; esac

Example:

case $OS in

 "Linux") echo "Linux OS" ;;

 "Windows") echo "Windows OS" ;;

 *) echo "Other OS" ;;

esac

Page 1 of 2 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/743-shell-scripting-cheatsheet
http://cheatsheetshero.com/user/all/743-shell-scripting-cheatsheet
http://cheatsheetshero.com/user/all/743-shell-scripting-cheatsheet
https://cheatsheetshero.com/

Functions & Commands

Advanced Techniques

Function Definition

function_name () { commands } or function

function_name { commands }

Example:

my_function () {

 echo "Hello from my_function"

}

my_function

Passing arguments to functions:

function_name arg1 arg2

Access arguments inside the function using $1 ,

$2 , etc.

Essential Commands

ls List directory contents.

cd Change directory.

mkdir Create directory.

rm Remove files or directories.

cp Copy files or directories.

mv Move files or directories.

cat Concatenate and display files.

grep Search for patterns in files.

find Search for files based on criteria.

String Manipulation

substring=${string:position:length} -

Extracts a substring.

Example:

string="Hello World"

substring=${string:0:5} # Hello

length=${#string} - Gets the length of a

string.

Example:

string="Hello"

length=${#string} # 5

string//pattern/replacement - Replaces all

occurrences of a pattern.

Example:

string="Hello World"

new_string=${string//World/Universe} #

Hello Universe

Error Handling

set -e - Exit immediately if a command exits

with a non-zero status.

Example:

set -e

command_that_might_fail

echo "This will not be executed if the

command fails"

|| - Execute a command only if the previous

command fails.

Example:

command_that_might_fail || echo "Command

failed"

&& - Execute a command only if the previous

command succeeds.

Example:

command_that_must_succeed && echo

"Command succeeded"

Process Substitution

<(command) - Provides the output of a

command as if it were a file.

Example:

diff <(ls dir1) <(ls dir2)

>(command) - Redirects output to a command.

Example:

ls > >(tee output.txt)

Debugging

set -x - Display commands and their

arguments as they are executed.

set +x - Disable command tracing.

echo "Debugging message" >&2 - Print

debugging messages to stderr.

Page 2 of 2 https://cheatsheetshero.com

https://cheatsheetshero.com/

