
RESTful API Design Cheatsheet
A quick reference guide covering the essential principles, methods, and best practices for designing RESTful APIs.

Core Principles

HTTP Methods

Resource Design

Status Codes & Response Handling

Key Concepts

REST (Representational State Transfer): An architectural style for building

networked applications, relying on a stateless, client-server communication

protocol, typically HTTP.

Resource: A key abstraction of information. It can be a document, image,

service, or a collection of other resources.

Representation: The format in which a resource is transferred (e.g., JSON,

XML).

Stateless: Each request from client to server must contain all of the

information necessary to understand the request, and cannot take

advantage of any stored context on the server.

Uniform Interface: REST relies on a uniform and predefined interface for

interacting with resources.

Architectural Constraints

Client-Server: Separation of concerns; clients and servers can evolve

independently.

Stateless: No client context is stored on the server between requests.

Cacheable: Responses should be cacheable to improve performance.

Uniform Interface: Standardized interaction via HTTP methods.

Layered System: Client cannot ordinarily tell whether it is connected directly

to the end server, or to an intermediary along the way.

Code on Demand (optional): Servers can extend client functionality by

transferring executable code.

Common Methods

GET Retrieve a resource. Should be a safe and idempotent operation.

POST Create a new resource. May result in a new resource URI.

PUT Update an existing resource. Replaces the entire resource.

PATCH Partially modify a resource. Applies partial updates.

DELETE Delete a resource.

OPTIONS Describe the communication options for the target resource.

HEAD Same as GET, but only transfers the status line and header

section.

Idempotency

An operation is idempotent if performing it once has the same effect as

performing it multiple times. GET , PUT , DELETE , and HEAD should be

idempotent.

Example: Deleting a resource using DELETE multiple times should still result

in the resource being gone after the first deletion.

URI Design

Use nouns to represent resources, not verbs. E.g., /users instead of

/getUsers .

Use hierarchical URIs to represent relationships. E.g.,

/users/{userId}/posts .

Use plural nouns for collections. E.g., /users .

Avoid using file extensions in URIs. Content negotiation should be used

instead (Accept header).

Use hyphens (-) to improve readability in URIs. E.g., /blog-posts .

URI Examples

/users Collection of users.

/users/{userId} A specific user.

/users/{userId}/posts Posts by a specific user.

/posts/{postId} A specific post.

Common Status Codes

200 OK Successful request.

201 Created Resource created successfully.

204 No Content Request processed successfully, but no content to

return.

400 Bad Request Invalid request format or parameters.

401 Unauthorized Authentication required.

403 Forbidden The server understands the request, but refuses to

authorize it.

404 Not Found Resource not found.

500 Internal Server

Error

Generic server error.

Content Negotiation

Use the Accept header in the request to specify the desired response

format (e.g., application/json , application/xml).

Use the Content-Type header in the request to specify the format of the

request body.

The server should respond with the appropriate Content-Type header

indicating the format of the response.

Page 1 of 1 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/763-restful-api-design-cheatsheet
http://cheatsheetshero.com/user/all/763-restful-api-design-cheatsheet
http://cheatsheetshero.com/user/all/763-restful-api-design-cheatsheet
https://cheatsheetshero.com/

