

Operations Management Cheatsheet

A concise reference guide covering key concepts, tools, and techniques in Operations Management. From forecasting and inventory management to quality control and process design, this cheat sheet provides a quick overview of essential topics for efficient business operations.

Fundamentals of Operations Management

Key Concepts

Operations The design, operation, and Management improvement of the systems (OM) that create and deliver the firm's primary products and services. Supply Chain The sequence of processes involved in the production and distribution of a commodity. Value Chain A high-level model of how businesses receive raw materials as input, add value to the raw materials through various processes, and sell finished products to customers. Efficiency Performing activities at the lowest possible cost. **Effectiveness** Doing the right things to create the most value for the company. Productivity A measure of how well resources are used. Calculated

Types of Operations

Goods vs. Services

- Goods: Tangible products.
- Services: Intangible activities that provide a benefit

Pure Goods vs. Core Goods

- Pure Goods: Food products, chemicals, mining.
- Core Goods: Appliances, data storage systems, automobiles.

Pure Services vs. Core Services

- Pure Services: Teaching, medical advice, financial consulting.
- Core Services: Hotels, airlines, internet service providers.

Efficiency and Effectiveness in Operations

Balancing cost reduction with value creation is crucial.

Operations Strategy

Definition

Setting broad policies and plans for using the resources of a firm to best support its long-term competitive strategy.

Competitive **Dimensions**

- Cost: Low-cost provider.
- Quality: High performance or consistent quality.
- Delivery Speed: Fast delivery.
- Delivery Reliability: Ontime delivery.
- Coping with Changes: Flexibility and new-product introduction speed.

Trade-offs

Management must decide which parameters of performance are critical and concentrate resources on those characteristics.

Forecasting and Demand Management

as Output / Input.

Forecasting Methods

Qualitative Methods	Subjective forecasts that incorporate such factors as expert opinions and personal experiences. Useful when past data is unavailable.
Time Series Analysis	Using historical data to predict future demand. Assumes that past patterns will continue in the future.
Causal Relationship Forecasting	Forecasting using independent variables other than time to predict future demand.
Simulation	Using computer software to model alternative scenarios and forecast demand under different conditions.

Time Series Forecasting

Simple Moving Average	Forecast is the average of a fixed number of past periods.
	$F_t = (A_{t-1} + A_{t-2} + + A_{t-n}) / n$
	 Where: F_t = Forecast for period t A_{t-i} = Actual value in period t-i n = Number of periods in the average
Weighted Moving Average	Assigns different weights to each period's data based on importance.

 $F_t = w_1A_{t-1} + w_2A_{t-2}$ + ... + w_nA_{t-n}

Where:

w_i = Weight for period i

Exponential Smoothing

Averages past demand with a forecast of past demand.

 $F_t = F_{t-1} + \alpha(A_{t-1} - F_{t-1})$ 1})

Where:

 α = Smoothing constant $(0 < \alpha < 1)$

Forecast Error

Average of the absolute differences between the actual demand and the forecast. $MAD = \Sigma A_t - F_t / n$
Average of the squared differences between the actual demand and the forecast. $MSE = \Sigma(A_t - F_t)^2 / n$
Average of the absolute percentage differences between the actual demand and the forecast. $MAPE = \Sigma(A_t - F_t / A_t) * 100 / n$

Page 1 of 2 https://cheatsheetshero.com

Inventory Management

Inven	Inventory Types	
•	Materials nput materials that are used in the production process.	
• F	c-in-Process (WIP) Partially completed products in the manufacturing process.	
• (hed Goods Completed products ready for sale to customers.	
• 1	tenance, Repair, and Operating (MRO) tems used to support production and operations.	

Inventory Costs

Costs for storage, handling, insurance, and so on.
Costs for arranging specific equipment setups, and so on.
Costs for placing an order and receiving goods.
Costs for running out of stock.

Inventory Models

Economic Order Quantity (EOQ)	Determines the optimal order size to minimize total inventory costs. EOQ = \(\lambda((2DS) / H) \)
	 Where: D = Annual demand S = Ordering cost per order H = Holding cost per unit per year
Reorder Point (ROP)	Determines when to reorder inventory. ROP = d * L Where: d = Average daily demand L = Lead time in days
Safety Stock	Extra inventory held to protect against uncertainties in demand or lead time.

Quality Management and Process Improvement

Quality Definitions

Quality	The ability of a product or
•	service to consistently meet or
	exceed customer expectations.
Dimensions of	 Performance
Quality	 Features
(Goods)	 Reliability
	 Durability
	 Serviceability
	 Aesthetics
	 Perceived Quality
Dimensions of	 Reliability
Quality	 Responsiveness
(Services)	 Competence
	Access
	 Courtesy
	 Communication
	 Credibility
	 Security
	 Understanding the
	Customer
	 Tangibles

Quality Tools

Cause-and-Effect Diagrams (Fishbone	
Dia •	grams) Used to identify potential causes of a problem.
Che	eck Sheets
٠	Used to collect and organize data.
Coi	ntrol Charts
٠	Used to monitor a process and determine whether it is in control.
His	tograms
•	Used to display the distribution of data.
Par	eto Charts
	Used to identify the most important causes

of a problem (80/20 rule).

Scatter Diagrams

• Used to examine the relationships between variables.

Flowcharts

• Used to map out the steps in a process.

Process Improvement Methodologies

Six Sigma	A disciplined, data-driven approach for eliminating defects in any process. Uses the DMAIC (Define, Measure, Analyze, Improve, Control) methodology.
Lean Manufacturing	Focuses on eliminating waste (muda) from all aspects of the manufacturing process.
Total Quality Management (TQM)	A management approach focused on continuous improvement and customer satisfaction.

https://cheatsheetshero.com Page 2 of 2