
Regular Expressions Cheatsheet
A quick reference guide to regular expressions (regex) in programming, covering syntax, common patterns, and usage examples.

Regex Basics & Metacharacters

Grouping and Backreferences

Anchors and Lookarounds

Basic Matching

lite

ral

Matches the literal character sequence.

Example: abc  matches ‘abc’.

.

(dot)

Matches any single character except

newline. Example: a.c  matches ‘abc’,

‘adc’, ‘aec’, etc.

^ Matches the beginning of the string.

Example: ^abc  matches ‘abcdef’, but

not ‘defabc’.

$ Matches the end of the string. Example:

abc$  matches ‘defabc’, but not

‘abcdef’.

[] Character class: Matches any single

character within the brackets. Example:

[abc]  matches ‘a’, ‘b’, or ‘c’.

[^] Negated character class: Matches any

single character not within the brackets.

Example: [^abc]  matches any

character except ‘a’, ‘b’, or ‘c’.

| Alternation: Matches either the

expression before or after the | .

Example: cat|dog  matches ‘cat’ or

‘dog’.

Quantifiers

* Matches the preceding character or group

zero or more times. Example: ab*c

matches ‘ac’, ‘abc’, ‘abbc’, ‘abbbc’, etc.

+ Matches the preceding character or group

one or more times. Example: ab+c

matches ‘abc’, ‘abbc’, ‘abbbc’, etc., but not

‘ac’.

? Matches the preceding character or group

zero or one time. Example: ab?c

matches ‘ac’ or ‘abc’.

{n

}

Matches the preceding character or group

exactly n  times. Example: ab{2}c

matches ‘abbc’.

{n

,}

Matches the preceding character or group

n  or more times. Example: ab{2,}c

matches ‘abbc’, ‘abbbc’, ‘abbbbc’, etc.

{n

,m

}

Matches the preceding character or group

between n  and m  times (inclusive).

Example: ab{2,4}c  matches ‘abbc’,

‘abbbc’, and ‘abbbbc’.

Character Classes

\

d

Matches any digit (0-9). Equivalent to [0-

9] .

\

D

Matches any non-digit character. Equivalent

to [^0-9] .

\

w

Matches any word character (alphanumeric

and underscore). Equivalent to [a-zA-Z0-

9_] .

\

W

Matches any non-word character.

Equivalent to [^a-zA-Z0-9_] .

\

s

Matches any whitespace character (space,

tab, newline, etc.).

\

S

Matches any non-whitespace character.

Grouping

(

)

Groups the enclosed pattern. Allows you to

apply quantifiers or alternations to the

entire group. Also captures the matched

group for backreferencing.

(

?:

)

Non-capturing group. Groups the pattern

but does not capture the matched group.

Useful for performance or when you don’t

need the captured value.

Backreferences

\1 , \2 , etc. Refers to the first, second,

etc. captured group in the

regex. Example: (.)

(.)\2\1  matches ‘abba’.

$1 , $2 , etc.

(in replacement

strings)

Refers to the first, second,

etc. captured group in the

replacement string of a

substitution operation.

Examples

Match a date in YYYY-MM-DD  format:

\d{4}-\d{2}-\d{2}

Match an email address (simplified):

\w+@\w+\.\w+

Match HTML tags:

<[^>]+>

Anchors

^ Matches the beginning of the string (or line, in multiline mode).

$ Matches the end of the string (or line, in multiline mode).

\

b

Matches a word boundary (the position between a word character

and a non-word character).

\

B

Matches a non-word boundary.

Lookarounds

(?

=patt

ern)

Positive lookahead: Asserts that the pattern follows the current

position, but does not consume the characters. Example: \w+(?

=\d)  matches ‘abc’ in ‘abc123’, but not ‘abc’ in ‘abc def’.

?!pa

tter

n

Negative lookahead: Asserts that the pattern does not follow the

current position. Example: \w+(?!\d)  matches ‘abc’ in ‘abc def’,

but not ‘abc’ in ‘abc123’.

(?

<=pat

tern

)

Positive lookbehind: Asserts that the pattern precedes the current

position, but does not consume the characters. Example: (?

<=\d)\w+  matches ‘abc’ in ‘123abc’, but not ‘abc’ in ‘abc def’.

?

<!pat

tern

Negative lookbehind: Asserts that the pattern does not precede

the current position. Example: (?<!\d)\w+  matches ‘abc’ in ‘abc

def’, but not ‘abc’ in ‘123abc’.

Page 1 of 2 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/783-regular-expressions-cheatsheet
http://cheatsheetshero.com/user/all/783-regular-expressions-cheatsheet
http://cheatsheetshero.com/user/all/783-regular-expressions-cheatsheet
https://cheatsheetshero.com/


Flags/Modifiers

Common Flags

i Case-insensitive matching. Example: /abc/i  matches ‘abc’, ‘ABC’,

‘aBc’, etc.

g Global matching. Finds all matches instead of stopping after the first.

m Multiline mode. ^  and $  match the beginning and end of each line

(delimited by \n ).

s Dotall mode. Allows the .  to match newline characters as well.

x Verbose mode. Allows whitespace and comments in the regex pattern

for better readability. Whitespace is ignored, and comments start with

# .

Using Flags (Examples)

In Python:

import re

pattern = re.compile('abc', re.IGNORECASE)  # Case-insensitive

matches = pattern.findall('aBcAbC')

print(matches)  # Output: ['aBc', 'AbC']

In JavaScript:

const regex = /abc/i; // Case-insensitive

const matches = 'aBcAbC'.match(regex);

console.log(matches); // Output: ['aBc', index: 0, input: 

'aBcAbC', groups: undefined]

const regexGlobal = /abc/gi; // Global and case-insensitive

const allMatches = 'aBcAbC'.match(regexGlobal);

console.log(allMatches); // Output: [ 'aBc', 'AbC' ]

In Ruby:

pattern = /abc/i  # Case-insensitive

matches = 'aBcAbC'.scan(pattern)

puts matches # Output: aBc

puts matches.count # Output: 2

Page 2 of 2 https://cheatsheetshero.com

https://cheatsheetshero.com/

