
Data Structures Cheatsheet
A quick reference guide to common data structures, their properties, and common use cases. This cheatsheet provides a concise overview for

developers and students.

Arrays and Linked Lists

Stacks and Queues

Arrays

Definition: Contiguous block of

memory holding elements

of the same type.

Access: Random access (O(1)) using

index.

Insertion/Deletion: O(n) in the worst case

(shifting elements).

Use Cases: Storing and accessing

elements by index,

implementing stacks and

queues.

Memory: Requires contiguous

memory; can lead to

fragmentation.

Example:
arr = [1, 2, 3, 4, 5]

print(arr[2]) #

Output: 3

Linked Lists

Definition: Collection of nodes, each

containing data and a

pointer to the next node.

Access: Sequential access (O(n)).

Insertion/Deletion: O(1) if the node is known.

Use Cases: Implementing stacks,

queues, and graphs;

dynamic memory allocation.

Memory: Non-contiguous memory;

more flexible memory

usage.

Example:
class Node:

 def __init__(self,

data):

 self.data =

data

 self.next =

None

Comparison

Arrays offer faster access but slower

insertion/deletion compared to linked lists. Linked

lists use memory more efficiently in dynamic

scenarios.

Arrays require a contiguous block of memory,

while linked lists can be scattered in memory.

Stacks

Definition: LIFO (Last-In, First-Out) data

structure.

Operations: Push (add element), Pop

(remove element), Peek (view

top element).

Implementation: Arrays or linked lists.

Use Cases: Function call stack,

expression evaluation,

backtracking.

Time

Complexity:

O(1) for push and pop

operations.

Example:
stack = []

stack.append(1) # Push

stack.pop() # Pop

Queues

Definition: FIFO (First-In, First-Out) data

structure.

Operations: Enqueue (add element),

Dequeue (remove element).

Implementation: Arrays or linked lists.

Use Cases: Task scheduling, breadth-first

search (BFS).

Time

Complexity:

O(1) for enqueue and

dequeue operations (using

linked list or circular array).

Example:
from collections import

deque

queue = deque()

queue.append(1) #

Enqueue

queue.popleft() #

Dequeue

Comparison

Stacks and queues differ in their ordering

principle: LIFO vs. FIFO. Stacks are used for tasks

that require reversing order, while queues

maintain order.

Stacks often manage function calls, while queues

handle task scheduling and processing.

Page 1 of 2 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/790-data-structures-cheatsheet
http://cheatsheetshero.com/user/all/790-data-structures-cheatsheet
http://cheatsheetshero.com/user/all/790-data-structures-cheatsheet
https://cheatsheetshero.com/

Trees

Hash Tables

Binary Trees

Definition: Each node has at most two

children: left and right.

Traversal

Methods:

Inorder, Preorder, Postorder.

Use Cases: Expression parsing, decision

trees.

Example:
class Node:

 def __init__(self,

data):

 self.data = data

 self.left = None

 self.right =

None

Balanced vs

Unbalanced:

Balanced trees have height

O(log n), while unbalanced

trees can have height O(n).

Binary Search Trees (BST)

Definition: Binary tree where for each node,

all nodes in the left subtree are

smaller, and all nodes in the right

subtree are larger.

Operations: Search, insert, delete.

Time

Complexity:

O(log n) on average, O(n) in the

worst case (unbalanced tree).

Use Cases: Efficient searching, sorting, and

retrieval.

Example:
Insert operation in BST

def insert(root, data):

 if root is None:

 return Node(data)

 else:

 if data <

root.data:

 root.left =

insert(root.left, data)

 else:

 root.right =

insert(root.right, data)

 return root

Heaps

Definition: Special tree-based data structure

that satisfies the heap property:

Min-Heap (parent <= children) or

Max-Heap (parent >= children).

Types: Binary Heap, Fibonacci Heap.

Use Cases: Priority queues, heap sort.

Time

Complexity:

O(log n) for insertion and

deletion.

Example:
import heapq

heap = []

heapq.heappush(heap, 5) #

Insert

heapq.heappop(heap) #

Remove min

Core Concepts

Definition: Data structure that implements an

associative array abstract data

type, which maps keys to values.

Hash

Function:

Function that maps keys to

indices in the array.

Collision

Handling:

Techniques to handle multiple

keys mapping to the same index

(e.g., chaining, open addressing).

Use Cases: Implementing dictionaries,

caching, symbol tables.

Example:
dictionary = {}

dictionary['apple'] = 1

print(dictionary['apple'])

Output: 1

Collision Resolution Techniques

Chaining: Each index in the hash table

points to a linked list of key-value

pairs.

Open

Addressing:

If a collision occurs, probe for an

empty slot in the table (e.g.,

linear probing, quadratic probing,

double hashing).

Time

Complexity:

O(1) average case (with good

hash function), O(n) worst case

(all keys map to the same index).

Load Factor: Ratio of the number of entries to

the number of buckets. High load

factors increase collision

probability.

Considerations

Choosing a good hash function is crucial for the

performance of a hash table. A poorly chosen

hash function can lead to frequent collisions and

O(n) performance.

Load factor should be monitored and the hash

table resized when it exceeds a certain threshold

to maintain good performance.

Page 2 of 2 https://cheatsheetshero.com

https://cheatsheetshero.com/

