

Network Performance Monitoring Cheatsheet

A comprehensive cheat sheet covering key aspects of Network Performance Monitoring (NPM), including metrics, tools, and techniques for maintaining optimal network health and performance.

Key Metrics

Latency		Packet Loss		Throughput	
Definition:	The time it takes for data to travel from source to destination.	Definition:	The percentage of packets that fail to reach their destination.	Definition:	The actual rate of data transfer across the network, typically measured in bits per
Importance:	High latency can indicate network congestion, routing issues, or slow hardware.	Importance:	High packet loss leads to retransmissions, degraded application performance, and	Importance:	second (bps). Low throughput can bottleneck applications and
Measurement:	Measured in milliseconds (ms) using tools like ping,	Measurement:	poor user experience. Monitored using network		services, leading to slow performance.
	traceroute, or specialized NPM solutions.		monitoring tools that track packet transmission and	Measurement:	Measured using tools like iperf, speedtest, or network
Acceptable Values:	Varies based on application requirements; real-time	Acceptable	reception rates. Ideally, packet loss should be		performance monitoring solutions.
values.	applications require very low latency (e.g., < 100ms).	Values:	close to 0%; values above 1% often indicate a problem.	Acceptable Values:	Should align with the network's bandwidth
Troubleshooting:	Investigate network paths, optimize routing, upgrade hardware, or implement QoS.	Troubleshooting:	Check for network congestion, faulty hardware (cables, NICs), or		capacity; significant deviations indicate potential issues.
			misconfigured network devices.	Troubleshooting:	Identify bandwidth bottlenecks, optimize
					network configurations, or upgrade network infrastructure.

Tools & Techniques

Ping

Traceroute/Tracert

Description:	A basic utility to test the	Description:	Traces the route taken by packets	Protocol)	
Description.	reachability of a network host. Sends ICMP echo requests and measures round-trip time.	Description.	to reach a destination, showing each hop along the way.	Description:	A protocol used to collect information from and manage network devices.
Usage:	ping <hostname> or ping <ip address></ip </hostname>	Usage:	traceroute <hostname> (Linux/macOS) or tracert <hostname> (Windows)</hostname></hostname>	Components:	SNMP Manager (collects data) and SNMP Agent (runs on
Limitations:	Limited information beyond reachability and latency; can be	Purpose:	Identify network bottlenecks or routing issues by examining		network devices and provides data).
	blocked by firewalls.	Network Mor	latency at each hop.	Uses:	Monitoring device status, bandwidth utilization, CPU load, and memory usage.

Comprehensive tools that provide real-time monitoring of network devices, traffic, and performance metrics.

Examples: SolarWinds Network Performance Monitor, PRTG Network Monitor, Zabbix, Nagios

Features often include alerting, reporting, and historical data analysis.

SNMP (Simple Network Management

Description:	A protocol used to collect information from and manage network devices.
Components:	SNMP Manager (collects data) and SNMP Agent (runs on network devices and provides data).
Uses:	Monitoring device status, bandwidth utilization, CPU load, and memory usage.

Advanced Techniques

NetFlow/IPFIX

sFlow	
-------	--

Description:	Network protocols used to collect IP traffic flow information. NetFlow is Cisco's proprietary protocol, while IPFIX is the standardized version (RFC	Description:	A sampling-based network monitoring protocol. It randomly samples network packets and sends flow data to a collector.
Functionality:	7011). Capture data about network	Advantages:	Lower overhead compared to NetFlow/IPFIX, as it doesn't track over cipage flow
traffic flows, including source/destination IPs, ports, protocols, and volume of traffic.		Disadvantages:	track every single flow. Less accurate than NetFlow/IPFIX due to sampling.
Usage:	Analyze network traffic patterns, identify bandwidth-intensive applications, and detect security		

QoS (Quality of Service) Monitoring

Description:	Monitoring the effectiveness of QoS policies implemented to prioritize network traffic.
Metrics:	Track packet loss, latency, and jitter for different traffic classes to ensure QoS policies are working as expected.
Benefits:	Ensures critical applications receive the necessary bandwidth and priority.

Deep Packet Inspection (DPI)

Examining the contents of network packets to identify applications, protocols, and potentially malicious traffic.

Uses:

Application identification, intrusion detection, and traffic shaping.

Best Practices

anomalies.

Baseline Establishment

threats.

Establish a baseline of normal network performance to identify deviations and

Collect data during periods of normal network activity to understand typical latency, throughput, and packet loss rates.

Alerting and Thresholds

Configuration:	Set up alerts to notify administrators when performance metrics exceed
Example:	Alert if latency exceeds 200ms or packet loss exceeds 1%.
Importance:	Proactive notification allows for quick identification and resolution of network issues.

Regular Reporting

performance to t	reports on network rack trends, identify recurring nstrate the value of network s.
Include data on la and device utiliza	tency, throughput, packet loss, tion.
Canadity Diappin	a
Capacity Plannir	ly
Purpose:	Use network performance data to forecast future capacity needs and plan for upgrades or expansions.