
GitLab Cheat Sheet
A comprehensive cheat sheet for using GitLab, covering essential commands, features, and workflows for version control and collaboration.

GitLab Basics

Merge Requests & Code Review

Core Concepts

Repository: A centralized storage location for

code, files, and version history.

Branch: An independent line of development,

allowing for parallel work and feature isolation.

Merge Request (MR): A proposal to merge

changes from one branch into another. It includes

code review, discussions, and automated checks.

Pipeline: An automated workflow that defines the

steps required to build, test, and deploy code.

CI/CD: Continuous Integration and Continuous

Delivery/Deployment. A set of practices to

automate the software release process.

GitLab Workflow

1. Create a Branch: Start a new feature or bug

fix by creating a branch from the main

branch.

2. Develop and Commit: Make changes on your

branch and commit them with descriptive

messages.

3. Push to GitLab: Push your branch to the

remote GitLab repository.

4. Create a Merge Request: Open a merge

request to propose your changes to the main

branch.

5. Review and Discuss: Collaborate with

reviewers to address feedback and improve

the code.

6. Run pipelines: Configure CI/CD pipelines to

validate changes before merging.

7. Merge: Once approved, merge the changes

into the main branch.

Basic Git Commands

`git clone ` Clone a repository from GitLab to

your local machine.

`git

checkout -b

`

Create and switch to a new

branch.

`git add .` Stage all changes for commit.

`git commit

-m ""`

Commit staged changes with a

descriptive message.

`git push

origin `

Push the local branch to the

remote GitLab repository.

`git pull

origin `

Pull the latest changes from the

remote branch to your local

branch.

Creating Merge Requests

1. Push your branch: After committing changes

locally, push your branch to the remote

GitLab repository using git push origin

<branch_name> .

2. Navigate to GitLab: Go to your project on

GitLab and you should see a prompt to

create a merge request for your recently

pushed branch.

3. Fill in details: Provide a title and description

for your merge request. Explain the changes

you’ve made and why they are necessary.

4. Assign reviewers: Choose one or more

reviewers to review your code. Consider

assigning individuals with expertise in the

affected areas.

5. Submit the merge request: Once you’ve

filled in all the necessary details, submit the

merge request.

Code Review Process

1. Receive notification: Reviewers will receive a

notification about the new merge request.

2. Review the code: Reviewers should carefully

examine the changes, looking for potential

bugs, security vulnerabilities, and adherence

to coding standards.

3. Provide feedback: Use GitLab’s commenting

features to provide feedback directly on the

code. Be clear and constructive in your

comments.

4. Iterate and improve: The author should

address the feedback and make necessary

changes. Push the updated code to the

branch, which will automatically update the

merge request.

5. Approve or request changes: Once the

reviewers are satisfied with the changes,

they can approve the merge request. If

further changes are needed, they can

request them.

Merge Request Commands

`git fetch

origin `

Fetch the remote branch to your

local machine.

`git merge

origin/`

Merge the remote branch into your

current branch (after fetching).

`git rebase

origin/`

Rebase your current branch onto

the remote branch (alternative to

merging).

Page 1 of 2 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/806-gitlab-cheat-sheet
http://cheatsheetshero.com/user/all/806-gitlab-cheat-sheet
http://cheatsheetshero.com/user/all/806-gitlab-cheat-sheet
https://cheatsheetshero.com/

GitLab CI/CD

GitLab Advanced Features

CI/CD Pipeline Configuration

GitLab CI/CD is configured using a .gitlab-

ci.yml file at the root of your repository. This

file defines the stages, jobs, and scripts that

make up your pipeline.

Stages: Define the order in which jobs are

executed (e.g., build, test, deploy).

Jobs: Define the tasks to be performed in each

stage (e.g., compiling code, running tests,

deploying to a server).

Scripts: Define the commands to be executed

within each job.

Variables: Define environment variables that can

be used in your scripts.

Example .gitlab-ci.yml

```yaml

stages:

- build

- test

- deploy

build_job:

stage: build

script:

- echo "Building..."

- ./build.sh

test_job:

stage: test

script:

- echo "Testing..."

- ./test.sh

deploy_job:

stage: deploy

script:

- echo "Deploying..."

- ./deploy.sh

only:

- main

```

CI/CD Variables

`CI_COMMIT_BRANCH` The branch or tag name

for which the pipeline is

running.

`CI_COMMIT_SHA` The commit SHA for

which the pipeline is

running.

`CI_PROJECT_ID` The ID of the GitLab

project.

`CI_PROJECT_NAME` The name of the GitLab

project.

`CI_PIPELINE_ID` The ID of the current

pipeline.

GitLab Pages

GitLab Pages allows you to host static websites

directly from your GitLab repository. You can use

it to create personal or project websites,

documentation, or blogs.

To set up GitLab Pages, you need to create a

.gitlab-ci.yml file that builds your website

and publishes it to the public directory.

GitLab will automatically deploy your website to a

GitLab Pages domain (e.g.,

username.gitlab.io/projectname).

GitLab Issues

GitLab Issues are used to track bugs, feature

requests, and other tasks related to your project.

They provide a central place to discuss and

manage work.

You can assign issues to team members, set

milestones, add labels, and track progress.

Issues can be linked to merge requests to track

the code changes that address them.

GitLab Security

GitLab provides various security features to help

you identify and address vulnerabilities in your

code.

Static Application Security Testing (SAST):

Analyzes your source code for potential

vulnerabilities.

Dynamic Application Security Testing (DAST):

Tests your running application for vulnerabilities.

Dependency Scanning: Identifies vulnerabilities

in your project’s dependencies.

Container Scanning: Scans your Docker images

for vulnerabilities.

Page 2 of 2 https://cheatsheetshero.com

https://cheatsheetshero.com/

