# CHEAT

# Hardware & Electronics Cheatsheet

A quick reference guide covering essential hardware components, basic electronics concepts, common tools, and troubleshooting techniques.



# **Essential Hardware Components**

# Central Processing Unit (CPU)

# Storage Devices

| Function: The brain of the computer, executes  |  |
|------------------------------------------------|--|
| instructions.                                  |  |
| Key Specs: Clock speed (GHz), number of cores. |  |

cache size, socket type (e.g., LGA 1700, AM5). Manufacturers: Intel, AMD

Considerations: Compatibility with motherboard, thermal design power (TDP), integrated graphics (iGPU).

#### Random Access Memory (RAM)

Function: Short-term memory for active processes.

Key Specs: Capacity (GB), speed (MHz), type (DDR4, DDR5), latency (CL).

Considerations: Motherboard compatibility (number of slots, supported speeds), dual/quadchannel configuration.

## **Basic Electronics Concepts**

#### Ohm's Law

Solid State Function: Fast storage using flash Drive memory. (SSD) Key Specs: Capacity (GB/TB), read/write speeds (MB/s), interface (SATA, NVMe). Considerations: NVMe SSDs offer significantly faster performance. Hard Disk Function: Traditional storage using Drive magnetic platters. (HDD) Key Specs: Capacity (GB/TB), rotational speed (RPM), interface (SATA)

Considerations: Slower than SSDs but generally cheaper for large capacities.

## Graphics Processing Unit (GPU)

Function: Handles graphics rendering for display. Key Specs: VRAM (GB), clock speed (MHz), CUDA cores (NVIDIA) / Stream Processors (AMD), interface (PCIe). Manufacturers: NVIDIA, AMD

Considerations: Power consumption, cooling requirements, monitor resolution and refresh rate.

#### Motherboard

Function: Connects all components. Key Specs: Socket type (CPU compatibility), chipset, form factor (ATX, Micro-ATX, Mini-ITX), expansion slots (PCIe, RAM slots), I/O ports. Considerations: Compatibility with other components, features (e.g., Wi-Fi, overclocking support).

| Series and | Parallel | Circuits |
|------------|----------|----------|
| Selles and | raialici | Circuits |

| Ohm's Law                                                                                                                                                                                                                                                                                                             | Series and Parallel Circuits |                                                                                                                                                                                                                                                                                                                                         | Resistors                                                                                                                                                                                                                                                                                                              |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| <ul> <li>Formula: V = IR (Voltage = Current * Resistance)</li> <li>Description: Defines the relationship between voltage, current, and resistance in an electrical circuit.</li> <li>Units: <ul> <li>Voltage (V): Volts</li> <li>Current (I): Amperes (Amps)</li> </ul> </li> <li>Resistance (R): Ohms (Ω)</li> </ul> | Series<br>Circuit            | <ul> <li>Description: Components connected<br/>in a single path.</li> <li>Properties: <ul> <li>Current is the same through all<br/>components.</li> <li>Total resistance is the sum of<br/>individual resistances (R_total =<br/>R1 + R2 +).</li> <li>Voltage is divided across<br/>components.</li> </ul> </li> </ul>                  | Function: Limit current flow in a circuit.Types: Carbon film, metal film, wirewound.Key Specs: Resistance (Ohms), tolerance (%),<br>power rating (Watts).Color Code: Used to identify resistance value.Refer to a resistor color code chart.CapacitorsFunction: Store electrical energy in an electric<br>field.       |  |
|                                                                                                                                                                                                                                                                                                                       | Parallel<br>Circuit          | <ul> <li>Description: Components connected<br/>in multiple paths.</li> <li>Properties: <ul> <li>Voltage is the same across all<br/>components.</li> </ul> </li> <li>Total resistance is less than the<br/>smallest individual resistance<br/>(1/R_total = 1/R1 + 1/R2 +).</li> <li>Current is divided across<br/>components.</li> </ul> | Types: Ceramic, electrolytic, film.<br>Key Specs: Capacitance (Farads), voltage rating<br>(Volts), tolerance (%).<br>Diodes<br>Function: Allow current to flow in one direction<br>only.<br>Types: Rectifier, Zener, LED.<br>Key Specs: Forward voltage (Vf), reverse<br>breakdown voltage (Vr), forward current (If). |  |

### **Common Tools and Equipment**

#### Hand Tools

#### Test Equipment

| Screwdrivers      | Phillips, flathead, Torx. Use the correct size and type for the | Multimeter        | Measures voltage, current, and resistance. Essential for                                        | Power<br>Supply | Provides stable DC voltage for testing and powering circuits. |
|-------------------|-----------------------------------------------------------------|-------------------|-------------------------------------------------------------------------------------------------|-----------------|---------------------------------------------------------------|
|                   | screw.                                                          |                   | troubleshooting circuits.                                                                       | Breadboard      | Solderless prototyping platform                               |
| Pliers            | Needle-nose, wire cutters. For gripping, bending, and cutting   | Oscilloscope      | Displays voltage signals over<br>time. Useful for analyzing<br>waveforms and identifying signal |                 | for building and testing circuits.                            |
|                   | wires.                                                          |                   |                                                                                                 |                 |                                                               |
| Wire              | For removing insulation from                                    |                   | issues.                                                                                         |                 |                                                               |
| Strippers         | wires without damaging the conductor.                           | Logic<br>Analyzer |                                                                                                 |                 |                                                               |
| Soldering<br>Iron | Used for soldering electronic components. Use with solder and   |                   |                                                                                                 |                 |                                                               |
|                   | flux.                                                           |                   |                                                                                                 |                 |                                                               |

## **Troubleshooting Techniques**

General Troubleshooting Steps

- 1. Define the Problem: Clearly identify the symptoms and what is not working correctly.
- 2. Isolate the Issue: Try to narrow down the possible causes and affected components.
- 3. Gather Information: Consult manuals, datasheets, and online resources for relevant information.
- 4. Test and Verify: Use appropriate test equipment to check voltages, currents, and signals.
- 5. **Replace Suspect Components:** If a component is identified as faulty, replace it with a known good one.
- 6. Document Your Findings: Keep a record of the troubleshooting process and results for future reference.

#### Common Hardware Issues

No Power: Check power supply, power cord, and power switch. Verify voltage levels with a multimeter. Overheating: Ensure proper cooling, check fan operation, and clean dust from heatsinks. Connectivity Issues: Check cables, connectors, and network settings. Verify driver installation.

#### Common Software Issues

Driver Problems: Update or reinstall drivers. Check for compatibility issues. Operating System Errors: Run system diagnostics, check for corrupted files, and consider reinstalling the OS. Application Conflicts: Identify and remove conflicting activery. Check for compatibility.

conflicting software. Check for compatibility issues.

#### Soldering Troubleshooting

Other Equipment

**Cold Joints:** Dull, grayish solder joints that lack proper adhesion. Reheat the joint with flux. **Solder Bridges:** Unintentional connections between adjacent pads or components. Remove excess solder with solder wick or desoldering pump.

**Insufficient Solder:** Not enough solder to create a solid connection. Add more solder and ensure proper wetting.