
Valgrind Cheatsheet
A comprehensive cheat sheet for Valgrind, a powerful memory debugging and profiling tool for Linux. This guide covers essential Valgrind tools,

common options, and practical examples to help you identify and fix memory-related issues in your C/C++ programs.

Valgrind Fundamentals

Advanced Memcheck Options

Core Tools Overview

Memcheck: Detects memory management

problems like memory leaks, invalid reads/writes,

and use of uninitialized values.

Cachegrind: A cache and branch-prediction

profiler.

Callgrind: A call graph generating cache and

branch prediction profiler. Extends Cachegrind

functionality.

Helgrind: Detects threading errors.

DRD (Data Race Detector): Another tool for

detecting data races in multithreaded programs.

Massif: Heap profiler, measures how much heap

memory your program uses.

DHAT (Dynamic Heap Analysis Tool): A different

kind of heap profiler, useful for understanding

memory usage over time.

Basic Memcheck Usage

Command Description

valgrind --leak-

check=full

./myprogram

Run myprogram under

Memcheck with full leak

checking enabled.

valgrind --leak-

check=summary

./myprogram

Run myprogram under

Memcheck, but only

provide a summary of

leaks.

valgrind --leak-

check=yes

./myprogram

Enables basic leak

checking (same as --

leak-check=summary).

valgrind --show-

reachable=yes

./myprogram

Shows reachable memory

blocks at program exit

(useful for debugging).

valgrind --

track-origins=yes

./myprogram

Tracks the origin of

uninitialized values (can

help find the source of

errors).

Understanding Memcheck Output

Memcheck reports different kinds of errors:

Invalid read/write: Accessing memory that

hasn’t been allocated or is outside the

bounds of an allocated block.

Use of uninitialised value: Using a variable

before it has been assigned a value.

Invalid free: Attempting to free memory that

was not allocated with malloc or that has

already been freed.

Memory leak: Memory that was allocated but

never freed before the program exited.

Suppressing Errors

Sometimes Valgrind reports errors that are known

and acceptable (e.g., from third-party libraries).

You can suppress these errors using a

suppression file.

1. Create a suppression file (e.g.,

suppressions.txt) with error descriptions.

2. Use the --

suppressions=suppressions.txt option to

load the file.

Example Suppression File Entry:

{

 <insert_a_suppression_name_here>

 Memcheck:Param

 fun:malloc

 ...other matching criteria...

}

Controlling Verbosity

Option Description

--

verbose or

-v

Increases verbosity level. Can be

specified multiple times for more

detail.

--quiet Suppresses most output. Useful

for automated testing.

Error Kinds

Valgrind categorizes errors. Key error types

include:

InvalidRead

InvalidWrite

InvalidFree

Leak_DefinitelyLost

Leak_PossiblyLost

Leak_Reachable

Leak_StillReachable

Page 1 of 2 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/817-valgrind-cheatsheet
http://cheatsheetshero.com/user/all/817-valgrind-cheatsheet
http://cheatsheetshero.com/user/all/817-valgrind-cheatsheet
https://cheatsheetshero.com/

Profiling with Cachegrind & Callgrind

Threading Errors with Helgrind & DRD

Cachegrind Basics

Cachegrind simulates the cache of your CPU,

providing insights into cache misses, branch

prediction, and instruction counts.

valgrind --tool=cachegrind ./myprogram

This command generates a

cachegrind.out.pid file containing profiling

data.

Use cg_annotate to analyze the Cachegrind

output:

cg_annotate cachegrind.out.pid

This command displays annotated source code

with cache statistics.

Callgrind for Function-Level Profiling

Command Description

valgrind --

tool=callgrind

./myprogram

Runs myprogram under

Callgrind, generating

callgrind.out.pid .

callgrind_annota

te

callgrind.out.pi

d

Analyzes Callgrind output,

showing function-level

performance data.

kcachegrind Graphical tool to visualize

Callgrind profiling data.

Key Metrics in Cachegrind/Callgrind

Ir: Instructions read

I1mr: Level 1 instruction cache misses

Ilmr: Last level instruction cache misses

Dr: Data reads

Dw: Data writes

D1mr: Level 1 data cache misses

D1mw: Level 1 data cache write misses

Dlmr: Last level data cache reads misses

Dlmw: Last level data cache write misses

Helgrind - Threading Error Detection

Helgrind detects potential threading errors,

primarily focusing on data races.

valgrind --tool=helgrind ./myprogram

It identifies locations where multiple threads

access the same memory without proper

synchronization (e.g., locks).

DRD (Data Race Detector)

DRD is another tool for detecting data races, and

often complements Helgrind.

valgrind --tool=drd ./myprogram

It uses a different algorithm and may find data

races that Helgrind misses (and vice versa).

Interpreting Helgrind/DRD Output

Helgrind and DRD reports highlight the lines of

code where potential data races occur. Examine

these locations carefully to ensure proper

synchronization.

Look for missing locks, incorrect lock usage, or

other synchronization issues.

Page 2 of 2 https://cheatsheetshero.com

https://cheatsheetshero.com/

