
System Design Interview Cheatsheet
A comprehensive guide to help you prepare for system design interviews. Covers key concepts, common architectures, and practical tips.

Core Concepts

Key Components & Technologies

Common System Architectures

Scalability

Vertical

Scaling (Scale

Up)

Increasing the resources of a

single server (e.g., CPU, RAM).

Pros: Simple

Cons: Hardware limits, single

point of failure.

Horizontal

Scaling (Scale

Out)

Adding more servers to the

system.

Pros: High availability, fault

tolerance

Cons: Complexity, data

consistency challenges.

Tradeoffs Consider which type of scaling

is appropriate for your

application’s needs and

constraints.

Availability

Definition The percentage of time a

system is operational and

accessible.

High

Availability

(HA)

Designing systems to minimize

downtime and ensure

continuous operation.

Strategies Replication, redundancy, failover

mechanisms.

Consistency

Definition Ensuring that all clients see the

same data at the same time.

CAP

Theorem

In a distributed system, it’s

impossible to simultaneously

guarantee Consistency,

Availability, and Partition

Tolerance. You must choose two.

Eventual

Consistency

A weaker guarantee where data

will be consistent eventually, but

not necessarily immediately.

Load Balancers

Purpose Distribute incoming network traffic

across multiple servers.

Types Layer 4 (TCP) and Layer 7

(HTTP/HTTPS).

Algorithms Round Robin, Least Connections, IP

Hash.

Databases

SQL (Relational) MySQL, PostgreSQL.

Pros: ACID properties,

structured data.

Cons: Scalability challenges.

NoSQL (Non-

Relational)

MongoDB, Cassandra, Redis.

Pros: Scalability, flexibility.

Cons: Eventual consistency,

unstructured data.

Considerations Choose the database type

based on data model,

consistency requirements,

and scalability needs.

Caching

Purpose Store frequently accessed data to

reduce latency and improve

performance.

Types Client-side, CDN, server-side (e.g.,

Redis, Memcached).

Strategies Write-through, write-back, cache

invalidation.

Microservices Architecture

Description An architectural style that

structures an application as a

collection of small, autonomous

services, modeled around a

business domain.

Benefits Independent deployment,

scalability, technology diversity.

Challenges Complexity, distributed tracing,

inter-service communication.

Message Queues

Purpose Asynchronous communication

between services. Decouples

services and provides buffering.

Examples RabbitMQ, Kafka.

Use

Cases

Background processing, task queues,

event-driven architectures.

Content Delivery Network (CDN)

Description A distributed network of servers

that delivers content to users

based on their geographic location.

Benefits Reduced latency, improved

performance, decreased load on

origin servers.

Use Cases Serving static assets (images,

videos, CSS, JS).

Page 1 of 2 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/822-system-design-interview-cheatsheet
http://cheatsheetshero.com/user/all/822-system-design-interview-cheatsheet
http://cheatsheetshero.com/user/all/822-system-design-interview-cheatsheet
https://cheatsheetshero.com/


Interview Tips

Clarify Requirements

Always start by clarifying the requirements and

constraints of the system. Ask questions to

understand the scope and goals.

Examples:

How many users?

What are the read/write ratios?

What are the latency requirements?

What are the storage requirements?

Think Out Loud

Explain your thought process and reasoning as

you design the system. This allows the

interviewer to understand your approach and

provide feedback.

Discuss the trade-offs of different design choices

and justify your decisions.

Focus on Bottlenecks

Identify potential bottlenecks in the system (e.g.,

database, network) and discuss how to address

them.

Propose solutions such as caching, load

balancing, and database sharding to mitigate

bottlenecks.

Page 2 of 2 https://cheatsheetshero.com

https://cheatsheetshero.com/

