CHEAT
SHEETS

Getting Started & Basic Concepts

Next.js Cheat Sheet

A concise cheat sheet covering essential Next.js concepts, commands, and best practices for building efficient and scalable React applications.

Project Setup Key Concepts
Create a new Next.js app: Pages Files in the pages directory
. become routes based on their
npx create-next-app@latest my-nextjs-app
filename. For example,
cd my-nextjs-app pages/about.js becomes
/about
Start the development server:

Components Reusable pieces of Ul. Can be
npm run dev functional components or class
# or components.
yarn dev Layouts Components that wrap pages to
#or provide a consistent Ul structure
pnpm dev across different routes. Often
# or implemented usinga _app.js
bun dev file or layout components.

API Routes Serverless functions defined in

Build for production:

npm run build
# or

yarn build

# or

pnpm build

# or

bun build

Start the production server:

npm run start
# or

yarn start

# or

pnpm start

# or

bun start

Routing & Navigation

Basic Routing

pages/api for handling
backend logic directly within your
Next.js application.

File Structure

pages/ - Contains React components that are
automatically converted into routes.

public/ - For static assets like images, fonts,
etc.

components/ - (Optional) A common place to
store React components.

styles/ - For CSS modules, global stylesheets,
etc.

_app.js - Custom app component for
initializing pages. Can be used for layouts, global
styles, and more.

_document.js
controlling the <html> tag. Advanced usage.

- Custom document for

Link Component

Dynamic Routes

Files in the pages directory automatically
become routes.

pages/index.js -> / (the homepage)
/about
pages/blog/index.js -> /blog
pages/blog/[id].js -> /blog/:id (dynamic
route)

pages/about.js ->

Page 1 of 3

Import
import Link from
'next/link';

Usage
<Link href="/about">

<a>About Us</a>

</Link>

Prefetching The Link component

automatically prefetches pages in
the background for faster
navigation. It makes the page faster
when you click the link.

Use bracket syntax [] to create dynamic
routes. For example, pages/posts/[id].js will
handle routes like /posts/1 , /posts/2 ,etc.

Access the route parameters using the
useRouter hook:

import { useRouter } from 'next/router';
function Post() {
const router = useRouter();

const { id } = router.query;

return <p>Post: {id}</p>;

https://cheatsheetshero.com


http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/828-next-js-cheat-sheet
http://cheatsheetshero.com/user/all/828-next-js-cheat-sheet
http://cheatsheetshero.com/user/all/828-next-js-cheat-sheet
https://cheatsheetshero.com/

useRouter Hook

Import .
import { useRouter } from
'next/router’;

Properties  router.pathname : The path of the

current page.

router.query : Anobject
containing the query parameters.

router.asPath : The pathin the
browser (including the query
parameters).

router.push(url, as, options) :
Programmatically navigate to a new
page.

router.replace(url, as,
options) :Programmatically replace

the current route in the history stack.

Data Fetching
Data Fetching Methods

getServerSideProps

getStaticPaths

Next.js provides several data fetching methods
for different use cases:
e getStaticProps : Fetch data at build time.
* getServerSideProps : Fetch data on each
request.
e getStaticPaths : Specify dynamic routes
to pre-render based on data.

getStaticProps

Fetches data at build time. Ideal for
content that doesn’t change
frequently (e.g., blog posts,
marketing pages).

Description

Usage )
export async function

getStaticProps(context) {
const data = await

fetchData();

return {
props: { data }, // will
be passed to the page
component as props
revalidate: 10, //
Optional: Refetch data every

10 seconds

3

When to Use when you can pre-render the
Use page at build time based on the
data.

Page 2 of 3

Description

Usage

When to
Use

Fetches data on each request. Use
for data that changes frequently or
requires authentication.

export async function
getServerSideProps(context)
{

const data = await
fetchData(context.req,

context.res);

return {
props: { data }, // will
be passed to the page
component as props

}i

Use when you need to fetch data
on every request, such as when
you have user-specific data or data
that updates very frequently.

Description

Usage

Fallback
Options

Specifies which dynamic routes to

pre-render at build time. Required

for dynamic routes when using
getStaticProps .

export async function
getStaticPaths() {
const paths = await
getAllPostIds();
return {
paths,
fallback: false, // or
'blocking' or true

3

fallback: false :Any paths not
returned by getStaticPaths will
result in a 404 page.

fallback: true :Next.js will
serve a static page with a loading
indicator. After the page is
generated, it will be cached and
served for future requests.

fallback: 'blocking' :The user
will wait for the page to be
generated; Next.js will server the
complete page for future requests.

https://cheatsheetshero.com


https://cheatsheetshero.com/

API Routes and Middleware

API Route Basics

Middleware

Middleware Example

Create APl endpoints by creating files in the
pages/api directory.

pages/api/hello.js

API routes are server-side only and won't increase
your client-side bundle size.

API Route Handler

Example

Request
Object
(‘req)

Response
Object
(res)

Page 3 of 3

export default function

handler(req, res) {
res.status(200).json({

name: 'John Doe' });

}

Contains information about the
incoming request, such as
headers, query parameters, and
body.

Used to send a response back to
the client. Includes methods like
res.status() , res.json()

res.send() ,etc.

Next.js 13+ introduced Middleware to run code
before a request is completed. You can rewrite,
redirect, add headers, or even block requests
based on the incoming request.

Create a middleware.js or middleware.ts
file in the root directory.

Example

Matcher

import { NextResponse } from
'next/server'
import type { NextRequest }

from 'next/server'

export function
middleware(request:
NextRequest) {

if
(request.nextUrl.pathname.start
swWith('/admin')) {

return

NextResponse.rewrite(new
URL('/login', request.url))

}

export const config = {
matcher: ['/about/:path*',

'/dashboard/:path*'],

}

The matcher config defines on
which paths the middleware should
run.

https://cheatsheetshero.com


https://cheatsheetshero.com/

