
Composer Cheatsheet
A comprehensive cheat sheet for Composer, the dependency manager for PHP. Covers installation, dependency management, autoloading, and

common commands with examples.

Installation & Basic Usage

Dependency Management

Installation

Local Installation:

Download composer.phar  and place it in your

project directory.

Global Installation:

curl -sS 

https://getcomposer.org/installer | php

mv composer.phar /usr/local/bin/composer

chmod +x /usr/local/bin/composer

Verify Installation:

composer --version

Ensure that PHP is installed and accessible from

your command line.

Basic Commands

compos

er 

init

Initializes a new composer project in

the current directory.

compos

er 

instal

l

Installs the project’s dependencies

from the composer.lock  file, or

composer.json  if composer.lock

doesn’t exist.

compos

er 

update

Updates the project’s dependencies

to the latest versions specified in

composer.json  and updates the

composer.lock  file.

compos

er 

require 

<packag

e>

Adds a new dependency to the

composer.json  file and installs it.

compos

er 

remove 

<packag

e>

Removes a dependency from the

composer.json  file and uninstalls it.

compos

er 

dump-

autoloa

d

Regenerates the autoloader files.

composer.json Structure

{

  "name": "vendor/package-name",

  "description": "A short description of 

the package.",

  "type": "project",

  "license": "MIT",

  "require": {

    "php": ">=7.4",

    "vendor/dependency": "^1.0"

  },

  "autoload": {

    "psr-4": {

      "Namespace\\": "src/"

    }

  },

  "require-dev": {

    "phpunit/phpunit": "^9.0"

  },

  "scripts": {

    "test": "phpunit"

  }

}

Specifying Versions

1.2.

3

Specific version.

>=1.2

.3

Minimum version, allows later versions.

<1.2.

3

Maximum version, allows earlier

versions.

~1.2.

3

Equivalent to >=1.2.3 <1.3.0 . Allows

updates up to the next minor version.

^1.2.

3

Equivalent to >=1.2.3 <2.0.0 . Allows

updates until the next major version.

* Any version. Not recommended for

production.

dev-

maste

r

Install the latest code from the

master  branch. Unstable.

Updating Dependencies

composer update  updates your dependencies

to the latest versions according to the constraints

specified in your composer.json  file.

Always commit your composer.lock  file after

updating dependencies.

If you want to update only single package use

composer update vendor/package

Resolving Conflicts

If Composer encounters conflicts, it will provide

error messages suggesting how to resolve them.

This often involves relaxing version constraints in

your composer.json  file.

Use composer diagnose  to identify common

configuration issues.

Consider using the composer prohibits 

<package> <version>  command to understand

why a package cannot be installed.

Page 1 of 2 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/875-composer-cheatsheet
http://cheatsheetshero.com/user/all/875-composer-cheatsheet
http://cheatsheetshero.com/user/all/875-composer-cheatsheet
https://cheatsheetshero.com/


Autoloading

Advanced Usage

PSR-4 Autoloading

PSR-4 is the recommended autoloading standard.

Specify the namespace to directory mapping in

the autoload  section of composer.json :

This maps the MyProject  namespace to the

src  directory.

"autoload": {

  "psr-4": {

    "MyProject\\": "src/"

  }

}

After modifying the autoload  section, run

composer dump-autoload  to regenerate the

autoloader.

Classmap Autoloading

Classmap autoloading scans specified directories

for PHP classes and builds a map.

Run composer dump-autoload  after modifying

the classmap  section.

"autoload": {

  "classmap": [

    "src/",

    "lib/"

  ]

}

Files Autoloading

Files autoloading includes specified PHP files.

Run composer dump-autoload  after modifying

the files  section.

"autoload": {

  "files": [

    "src/helpers.php",

    "lib/config.php"

  ]

}

Optimizing Autoloading

Use the -o  or --optimize  option with

composer dump-autoload  to generate an

optimized autoloader for production:

This generates a single autoload_static.php

file which can improve performance.

composer dump-autoload -o

Scripts

Define custom scripts in the scripts  section of

composer.json :

Run scripts using composer <script-name> :

"scripts": {

  "test": "phpunit",

  "lint": "phpcs --standard=PSR12 src/"

}

composer test

composer lint

Repositories

Configure custom repositories in the

repositories  section of composer.json  to

include packages from alternative sources:

"repositories": [

  {

    "type": "vcs",

    "url": "https://github.com/my-

org/private-repo"

  }

]

Supported repository types include vcs

(version control system), package , composer ,

and path .

Platform Configuration

Specify platform requirements in the config

section of composer.json  to override the

detected environment:

"config": {

  "platform": {

    "php": "7.4",

    "ext-intl": "7.4"

  }

}

This is useful for ensuring compatibility on

different environments.

Plugins

Composer plugins extend Composer’s

functionality. Install plugins like any other

dependency.

Ensure composer/installers  is required in your

project to handle different package types:

composer require composer/installers

Page 2 of 2 https://cheatsheetshero.com

https://cheatsheetshero.com/

