
Docker Compose Cheatsheet
A comprehensive guide to Docker Compose, covering essential commands, configurations, and best practices for defining and managing multi-

container Docker applications.

Basic Concepts & Setup

Essential Commands

Configuration Options

What is Docker Compose?

Docker Compose is a tool for defining and

running multi-container Docker applications. With

Compose, you use a YAML file to configure your

application’s services. Then, with a single

command, you create and start all the services

from your configuration.

Key benefits include:

Simplified multi-container management.

Infrastructure as code.

Reproducible environments.

Installation

Docker Compose is now integrated into Docker

Desktop. Ensure Docker Desktop is installed and

running. For standalone installation (if needed):

Example for Linux

sudo apt-get update

sudo apt-get install docker-compose-

plugin

Docker Compose File (docker-compose.yml)

The docker-compose.yml file defines the

services, networks, and volumes for your

application. Here’s a basic structure:

version: '3.8'

services:

 web:

 image: nginx:latest

 ports:

 - "80:80"

Lifecycle Management

docker

compose

up

Builds, (re)creates, starts, and

attaches to containers for all services

defined in the docker-compose.yml

file.

Flags: -d (detached mode).

docker

compose

down

Stops and removes containers,

networks, volumes, and images

created by up .

docker

compose

start

Starts existing containers.

docker

compose

stop

Stops running containers without

removing them.

docker

compose

restar

t

Restarts all services.

Service Interaction

docker

compose

ps

Lists the status of the containers.

docker

compose

logs

View output from the containers.

Service can be specified docker

compose logs <service> .

docker

compose

exec

Execute a command in a running

container.

Example: docker compose exec

web bash

docker

compose

run

Run a one-off command against a

service.

Example: docker compose run

web python manage.py migrate

Configuration Inspection

docker

compose

config

Validate and view the Compose

file configuration.

Useful for verifying your setup.

docker

compose

version

Displays the Docker Compose

version.

Build Configuration

Use the build directive to configure how a

service is built from a Dockerfile.

version: '3.8'

services:

 web:

 build:

 context: ./web

 dockerfile: Dockerfile.dev

 args:

 NODE_ENV: development

context : Path to the build context

(directory containing the Dockerfile).

dockerfile : Name of the Dockerfile

(defaults to Dockerfile).

args : Build-time arguments.

Image Configuration

Specify a pre-built image using the image

directive:

version: '3.8'

services:

 web:

 image: nginx:latest

You can also specify a private registry:

image: your-registry.com/your-image:tag

Port Mapping

Expose ports from the container to the host

machine:

version: '3.8'

services:

 web:

 ports:

 - "80:80" # host:container

 - "443:443"

Use expose to expose ports between linked

services (not accessible from the host):

expose:

 - "3000"

Page 1 of 2 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/897-docker-compose-cheatsheet
http://cheatsheetshero.com/user/all/897-docker-compose-cheatsheet
http://cheatsheetshero.com/user/all/897-docker-compose-cheatsheet
https://cheatsheetshero.com/

Advanced Configuration

Volumes

Share directories or volumes between the host

and containers.

version: '3.8'

services:

 web:

 volumes:

 - ./app:/var/www/html #

host_path:container_path

 - data-volume:/data # named

volume

volumes:

 data-volume:

Environment Variables

Set environment variables for services.

version: '3.8'

services:

 web:

 environment:

 -

DATABASE_URL=postgres://user:pass@db:543

2

 - API_KEY=${API_KEY}

 env_file:

 - .env

environment : Define variables directly in

the Compose file.

env_file : Load variables from one or more

.env files.

${VARIABLE} : Use environment variables

from the host system.

Dependencies & Health Checks

Define service dependencies and health checks

to ensure proper startup order and service

availability.

version: '3.8'

services:

 web:

 depends_on:

 db:

 condition: service_healthy

 healthcheck:

 test: ["CMD", "curl", "-f",

"http://localhost"]

 interval: 1m30s

 timeout: 10s

 retries: 3

 start_period: 40s

depends_on : Define service dependencies

and startup order. Conditions:

service_healthy , service_started .

healthcheck : Define how Docker

determines if a service is healthy.

Networks

Create custom networks for inter-container

communication.

version: '3.8'

services:

 web:

 networks: [frontend]

 db:

 networks: [frontend]

networks:

 frontend:

 driver: bridge

networks : Specify which networks a

service belongs to.

driver : Network driver (e.g., bridge ,

overlay).

Extending Services

Use extends to share configurations between

services.

version: '3.8'

services:

 web:

 extends:

 file: common-config.yml

 service: webapp

file : Path to the configuration file

containing the base service.

service : Name of the service to extend.

Resource Limits

Limit the resources a container can use.

version: '3.8'

services:

 web:

 deploy:

 resources:

 limits:

 cpus: '0.5'

 memory: 512M

cpus : CPU limit (e.g., 0.5 for 50% of a

CPU core).

memory : Memory limit (e.g., 512M , 1G).

Page 2 of 2 https://cheatsheetshero.com

https://cheatsheetshero.com/

