

PHYS. 131 Final

A comprehensive cheat sheet covering key concepts in fluid mechanics, oscillations, waves, sound, interference, and nuclear physics, designed for quick reference and effective problem-solving.

Fluids: Statics and Dynamics

Fluid Properties & Pressure

luid Properties & Pressure			
Density (ρ): Mass per unit volume. ρ = m/V (kg/m³)	Pressure (P): Force per unit area. P = F/A (N/m ² or Pa)		
Hydrostatic Pressure:	Gauge Pressure:		
Pressure at depth h in a fluid.	Pressure relative to atmospheric		
P = hpg, where g is the acceleration	pressure.		
due to gravity (9.8 m/s ²)	P_gauge = P_absolute - P_atm		
Absolute Pressure: Total pressure including atmospheric pressure. P_absolute = P_gauge + P_atm	Atmospheric Pressure: Standard atmospheric pressure. 1 atm = 101325 Pa		
Pascal's Principle: Pressure applied to an enclosed fluid is transmitted undiminished to every point in the fluid and the walls of the container.	Hydraulic Systems: $F_1/A_1 = F_2/A_2$ (Force amplification)		
Buoyant Force (F_b):	Archimedes' Principle:		
Upward force exerted by a fluid on an	The buoyant force on an object is		
immersed object.	equal to the weight of the fluid		
F_b = V_displaced * ρ_fluid * g	displaced by the object.		
Apparent Weight:	Manometer:		
Weight of an object in a fluid.	Measures pressure differences via		
W_apparent = W_object - F_b	column height difference.		
Barometer:	Blood Pressure:		
Uses fluid column to measure	Measured in mmHg,		
atmospheric pressure.	systolic/diastolic readings.		
Flow Rate (Q): Volume of fluid passing a point per unit time. Q = V/t = Av	Continuity Equation: For incompressible fluids: $A_1v_1 = A_2v_2$		
Streamlines:	Viscosity (η):		
Lines representing the path of fluid	A measure of a fluid's resistance		
particles in a steady flow.	to flow.		

Fluid Dynamics

Bernoulli's Equation:

Relates pressure, velocity, and height in a flowing fluid. P + $1\!\!/_2\rho v^2$ + ρgh = constant

Torricelli's Law:

Speed of fluid exiting an opening at depth h. v = $\sqrt{(2gh)}$

Viscosity Formula:

 ${\sf F}$ = η * (VA/L), where F is the viscous force, A is the area, V is the velocity, and L is the distance between layers.

Poiseuille's Law:

Q = [(P_2 - P_1)\pi r^4] / (8\eta L), where Q is the flow rate, r is the radius of the pipe, and L is the length of the pipe.

1/2pv^2

(1/2mv)/v = KE/V

ρgh

mgh/V = PEg/V

Oscillations and SHM

Simple Harmonic Motion (SHM)		Pendulums & Damping	
Definition: Periodic motion where the restoring force is proportional to the displacement.	Hooke's Law: F = -kx (Restoring force of a spring)	Simple Pendulum: T = $2\pi\sqrt{L/g}$, where L is length and g is gravitational acceleration.	Restoring force: F= mgθ = -mg/L*s
$F = -kx$ Displacement (x): $x(t) = A \cos(\omega t + \phi), \text{ where } A \text{ is}$	Angular Frequency (ω): $\omega = \sqrt{(k/m)} = 2\pi f = 2\pi/T$	Damped Oscillations: Amplitude decreases over time due to energy loss.	Damping Equation: ma = -bv - kx, where b is the damping coefficient.
amplitude, ω is angular frequency, and ϕ is phase constant.	Acceleration (a):	Underdamped: Oscillates with gradually decreasing	Overdamped: Returns to equilibrium slowly without
$v(t) = -A\omega \sin(\omega t + \phi)$ V_max = A ω	$a(t) = -A\omega^{2} \cos(\omega t + \phi) = -\omega^{2}x$ $A_{max} = A\omega^{2}$	 ω²x Critically Damped: Returns to equilibrium as quickly as 	Time Constant (τ): τ = m/b (Time for amplitude to
Period (T): Time for one complete oscillation. T = $2\pi\sqrt{(m/k)}$	Frequency (f): Number of oscillations per unit time. f = 1/T	possible without oscillating. Energy Loss:	decrease by a factor of e) Total energy of a damped oscillator: E(t) = 1/2kA(t)A2
Total Energy (E): $ = \frac{1}{2} \left[\frac{1}{2} + \frac$	Potential Energy (PE):	Damped oscillator loses energy twice as fast as amplitude.	E(1)-1/2KA(1) 2
E = KE + PE = $\frac{1}{2}mv^2 + \frac{1}{2}kx^2 = \frac{1}{2}kx^2$ PE = $\frac{1}{2}kx^2$ Kinetic Energy (KE):SHM Graphs:KE = $\frac{1}{2}mv^2 = \frac{1}{2}m\omega^2(A^2 - x^2)$ Displacement leads to velocity and acceleration graphs. Amax = -xmax	h equation: h = L -sqrt(L ^{2 - x} 2)	Resonance: Max amplitude when driven frequency ≈ natural frequency.	
	and acceleration graphs. Amax = -xmax	K = w^2 * m = sqrt(g/L)^2 * m = a/L * m = ma/L	A(t)=AOe^(-bt)
Vertical Spring Systems: Add mg to equilibrium; use same SHM formulas.	Horizontal Spring Systems: Normal SHM setup	Shown below as: K = mg/L T = 2pisqrt (m/k) = 2pisqrt	
		(m/(ma/L))	

L=L+L0U=elastic productChange in L = x (displacement)= L+L0, sosame as PEL = x - L0, h = L - sqrt(x^{2-L2})Gravitational

U=elastic potential energy is same as PE Gravitational force = mg

Traveling and Standing Waves

Traveling Waves

Transverse Wave: Oscillation is perpendicular to the direction of wave travel.	Longitudinal Wave: Oscillation is parallel to the direction of wave travel.	Definition: Superposition of two waves traveling in opposite directions, creating fixed nodes and antinodes. Antinodes: Points of maximum displacement. Open Ends (Pipes): Antinodes at open ends.	
Wave Speed (v): v = λf , where λ is wavelength and f is frequency.	Wave Function: $D(x, t) = A \sin(kx - \omega t + \varphi)$, where A is amplitude, k is wave number, ω is angular frequency, and φ is phase constant		
Wave Number (k): k = $2\pi/\lambda$	Angular Frequency (ω): $\omega = 2\pi f$		
Phase Constant (φ): Initial phase offset.	Phase Difference: $\Delta x / \lambda \times 2\pi$	Harmonics (f[]): Integer multiples of the fundamental frequency. f[] = nf_1 Wavelength in terms of length $\lambda = 2L/n$	
Snapshot Graph: D vs. x at a specific time.	History Graph: D vs. t at a specific location.		
u (linear tension) m/L or density * area	Tension, T = mg (mass times gravity)		
v=sqrt(T/u) u in v = sqrt(T/u) is the linear mass density (kg/m), and T is the tension	Direction of transverse wave depends on sign of wt in D(x, t). +ive is left since this is a sin wave.	Open-closed: add info	
		Assume frequency an instrument needs to produce is the fundamental.	

Standing Waves

x(t)+bv(t)+kx(t)=0

Damped equation of motion:

(Pipes): at open ends.	Fundamental Frequency (f ₁): Lowest frequency of a standing wave.
; (†[]): tiples of the fundamental f[] = nf ₁	Overtones: Frequencies above the fundamental frequency.
h in terms of length	Closed-closed: add info
ed:	Open-open: add info
equency an instrument needs to the fundamental.	Fundamental freq: f1=v/ λ = v/2L All other freq.: v/ λ = v/L = 2f1

Conservation of energy:

 $\begin{array}{l} Convert \ potential \ energy \ equation \\ 1/2kx^{2} \ to \ gravitational \ potential \ energy \ mgh. \end{array}$

Nodes: Points of zero displacement.

Fixed Ends (Strings): Nodes at both ends.

So you get mgh = 1/2mv2 since you cannot get k constant from simple pendulum.

Sound, Interference, and Nuclear Physics

Sound and Interference

Nuclear Physics

Sound Intensity (I): Power per unit area. I = P/A (W/m²)	Sound Level (β): Measured in decibels (dB). β = 10 log ₁₀ (I/I ₀), where I ₀ = 10 ⁻¹² W/m ²	Atomic Number (Z): Number of protons in the nucleus.	Mass Number (A): Number of protons and neutrons in the nucleus.
Doppler Effect: Change in frequency due to relative motion between source and observer.	Observer Moving: $f_o = f_s(v \pm v_o)/v$, where v is the speed of sound and v_o is the observer's speed.	Binding Energy (BE): Energy required to separate a nucleus into its constituent nucleons.	BE = (Zm_p + Nm_n - m_nucleus)c² Where m_p is proton mass, m_n is neutron mass, and m_nucleus is the nucleus mass.
Source Moving: $f_o = f_s^* v/(v \pm v_s)$, where v_s is the source's speed.	Constructive Interference: Path difference = $n\lambda$ (n = 0, 1, 2,)	Radioactive Decay: Spontaneous emission of particles or energy from an unstable	Decay Constant (λ): Probability of decay per unit time.
Destructive Interference: Path difference = $(n + \frac{1}{2})\lambda$ (n = 0, 1, 2,)	Beats: Periodic variations in amplitude due to interference of two slightly different frequencies.	nucleus.	
		Half-Life (T ₁ / ₂): Time for half of the radioactive nuclei to decay. $T_{1/2} = ln(2)/\lambda$	Activity (A): Rate of decay. A = λN(t)
Beat Frequency:	Speed of light in media v=c/n		
$f_beat = f_1 - f_2 $		Decay Law:	Radiation Types:
Bright fringe:Considerym (displacement) =delta(mwavelengthLength)/d, where, d =deltadistance between slits, L = distancebetween slits and screen	Constructive: delta(L)=n*wavelength	$N(t) = N_0 e^{-\lambda t}$, where N_0 is the initial number of nuclei.	α (alpha), β (beta), γ (gamma)
		Radiation Dose: Energy absorbed per unit mass.	Dose Equivalent: Takes into account the biological effect of different types of radiation.
*Destructive: delta(L) = (n	Mach number: speed of source/speed of sound	N(t),A(t), lambda	Energy from decay
+1/2)wavelength			