A comprehensive guide covering atomic structure, chemical reactions, collision theory, enzymes, and practical skills in biochemistry.

Chemical Foundations

Atomic Structure

Element : A substance that cannot be broken down into simpler substances by chemical means.	Atom: The smallest unit of an element that retains the properties of that element.
Proton : Positively charged subatomic particle located in the nucleus.	Neutron : Neutral subatomic particle located in the nucleus.
Electron : Negatively charged subatomic particle located in electron shells around the nucleus.	Nucleus : The dense central part of an atom, containing protons and neutrons.
Bohr-Rutherford Model : A model of the atom with a nucleus at the center and electrons in orbits around it.	Sketch the structure showing nucleus and electron shells for elements Z=1-20.

Chemical Reactions

Physical Reaction: A change in the physical properties of a substance without changing its chemical composition.

Chemical Reaction: A process that leads to the transformation of one set of chemical substances to another.

Law of Conservation of Mass: Mass is neither created nor destroyed in a chemical reaction.

Balance chemical equations to demonstrate the conservation of mass.

Collision Theory & Reaction Rates

Collision Theory

Collision Theory : For a reaction to occur, particles must collide wi	
	sufficient energy and correct orientation.
	Activation Energy: The minimum energy required for a reaction to occur.
	Reaction Rate: The speed at which reactants are converted into products.

Factors Affecting Reaction Rate

- Temperature: Increases
 kinetic energy, leading to
 more frequent and energetic
 collisions.
- 2. **Concentration**: Higher concentration increases the chance of collisions.
- 3. **Surface Area**: More surface area increases the number of collisions.
- 4. Catalysts: Lower activation energy, increasing the rate of reaction.
- Pressure (for gases): Increases the frequency of collisions.

Interpret Maxwell-Boltzmann and Energy profile graphs to understand temperature and catalysts' effects.

Enzymes & Practical Skills

Enzymes

	Enzymes : Biological catalysts that speed up chemical reactions without being consumed.
	Induced Fit Model : Enzymes change shape slightly to accommodate the substrate.
	Factors Affecting Enzyme Activity : Temperature, pH, substrate concentration, and inhibitors.
	ATP Synthase: An enzyme that creates the energy storage molecule ATP.

Practical Skills

Data Presentation : Correctly collect, organize, and present data in tables or graphs.	Interpretation : Analyze and explain experimental results.
Plastic Pollution: Discuss the environmental impact and the role of microbes in recycling.	Enzymes in Recycling : Explain the necessity of enzymes in breaking down plastics.

Page 1 of 1 https://cheatsheetshero.com