

Chemistry

A comprehensive cheat sheet covering advanced chemical concepts, including atomic structure, reaction kinetics, enzymes, and practical skills related to data analysis and environmental issues.

Chemical Foundations & Reactions

Atomic Structure Fundamentals

Element: A substance that cannot be broken down into simpler substances by chemical means. **Atom:** The smallest unit of an element that retains the chemical properties of that element.

Matter: Anything that has mass and takes up space.

Proton: Positively charged particle located in the nucleus; mass \approx 1 amu.

Neutron: Neutral particle located in the nucleus; mass ≈ 1 amu.

Electron: Negatively charged particle orbiting the nucleus; negligible mass.

Nucleus: The central core of an atom, containing protons and neutrons.

Atomic Structure (Bohr-Rutherford)

The Bohr-Rutherford model illustrates the atom as a central nucleus containing protons and neutrons, surrounded by electrons orbiting in specific shells or energy levels.

etch:		
++		
I I		
Nucleus	I.	
p+, n	I.	
++		
I		
e-		
Shell		
I I		

Sk

Subatomic Particles

Particle	Mass, Charge, Location	
Proton	≈ 1 amu, +1, Nucleus	
Neutron	≈ 1 amu, 0, Nucleus	
Electron	≈ 0 amu, -1, Orbitals	

Physical vs. Chemical Reactions

Physical Reaction	Alters form or appearance, but not chemical composition (e.g., melting ice).
Chemical Reaction	Involves the rearrangement of atoms and formation of new substances (e.g., burning wood).

Law of Conservation of Mass

Mass is neither created nor destroyed in a chemical reaction. The total mass of the reactants equals the total mass of the products.

Example:

 $\begin{array}{l} (2H_2 \ + \ 0_2 \ \rightarrow \ 2H_20) \\ \mbox{If 4g of } H_2 \ \mbox{reacts with 32g of } O_2, \ \mbox{36g of } H_2O \ \mbox{will} \\ \mbox{be produced.} \end{array}$

Balancing Chemical Equations

Ensure the number of atoms of each element is the same on both sides of the equation by adjusting coefficients.

Example:

Unbalanced: $H_2 + 0_2 \rightarrow H_2 0$ Balanced: $2H_2 + 0_2 \rightarrow 2H_2 0$

Collision Theory & Reaction Rates

Collision Theory Overview

For a reaction to occur, reactant particles must collide with sufficient energy (activation energy) and proper orientation.

Temperature: A measure of the average kinetic energy of particles in a substance.

Particles must possess energy equal to or greater than the activation energy (Ea) to overcome the energy barrier and react.

Reaction Rate: The speed at which a chemical reaction proceeds.

Reaction Rate Factors

Temperature: Higher temperature increases kinetic energy, leading to more effective collisions.

Concentration: Higher concentration increases the frequency of collisions.

Surface Area: Increased surface area (e.g., using powders instead of chunks) allows for more collisions.

Catalysts: Lower the activation energy, enabling more particles to react.

Pressure (for gases): Higher pressure increases the frequency of collisions.

Maxwell-Boltzmann Distribution

Illustrates the distribution of kinetic energies among particles at a given temperature. Higher temperatures shift the curve to the right, increasing the fraction of particles with sufficient energy to react.

Catalysts effectively lower the activation energy barrier.

graphs demonstrating how temperature and catalysts can influence rate of reaction.

Reaction Rate Calculations

Reaction rate can be calculated as the change in concentration of reactants or products over time. Rate = $-\Delta$ [Reactant]/ Δ t = Δ [Product]/ Δ t

Example:

If the concentration of a reactant decreases by 0.1 M in 10 seconds, the rate is 0.01 M/s.

Enzymes & Catalysis

Catalysis and Reaction Rate	'Induced Fit' Model	ATP Synthase	
Catalysts (including enzymes) increase reaction rate by lowering the activation energy without being consumed in the reaction.	The active site of an enzyme is not perfectly complementary to the substrate. Upon binding, the enzyme changes shape to better fit the	ATP synthase is an enzyme complex that synthesizes ATP from ADP and inorganic phosphate using the energy from a proton	
They provide an alternative reaction pathway with a lower energy barrier.	substrate, facilitating the reaction. This conformational change stresses substrate	gradient across a membrane (e.g., in mitochondria and chloroplasts).	
	bonds, lowering the activation energy.	It's a crucial enzyme for energy production in	
Enzymes: Biological Catalysts	Factors Affecting Enzyme Activity	cells.	
Enzymes are essential for life because they catalyze biochemical reactions at physiological conditions (temperature, pH) at a high rate.	Temperature: Enzymes have an optimal temperature range. High temperatures can		
Without enzymes, many reactions would occur too slowly to sustain life.	denature the enzyme. pH: Enzymes have an optimal pH range. Extremes can alter enzyme shape and activity.		
	Substrate Concentration: Increased substrate concentration generally increases the reaction rate until the enzyme is saturated.		
	Inhibitors: Competitive inhibitors bind to the active site, while non-competitive inhibitors bind elsewhere, altering enzyme shape.		

Practical Skills & Environmental Chemistry

Data Collection and Presentation	Method Improvement	Enzymatic Plastic Recycling	
Collect data systematically, organize it in tables (with proper headings and units), and present it graphically (scatter plots, bar graphs, etc.) to visualize trends.	Suggest modifications to improve accuracy, precision, or scope of the experiment. Consider controls, sample size, and measurement techniques.	Enzymes are required for efficient and specific breakdown of plastics into monomers, which can then be used to create new plastics or other valuable products. This can be faster and more energy-efficient than traditional methods.	
Data Interpretation	Plastic Pollution PLA (Polylactic Acid)		
Analyze data to identify patterns, relationships,	Plastic pollution poses a significant threat to		
and draw conclusions. Use statistical tools to determine significance.	ecosystems due to its persistence, accumulation in the environment, and potential harm to wildlife	Positives: Biodegradable under specific conditions, made from renewable resources.	
Hypothesis Validity	(ingestion, entanglement).	Negatives: Requires industrial composting facilities, can release methane if not composted	
Evaluate whether experimental data supports or refutes the hypothesis. Consider limitations of the method and potential sources of error.	Microbial Plastic Recycling	properly. Issues: Widespread adoption limited by infrastructure and consumer awareness.	
	Microbes can break down certain plastics through enzymatic degradation. This offers a potential solution for recycling plastics that are difficult to		
		Plastic Chemical Composition	

recycle through conventional methods.

plastics are mainly composed of carbon and hydrogen and sometimes oxygen, nitrogen, chlorine, sulphur, phosphorus, silicon and fluorine. Different plastics have different composition.