Scikit-learn Cheat Sheet
Scikit-learn Cheat Sheet

A concise cheat sheet for the scikit-learn library, covering essential functionalities for machine learning in Python. This guide includes key concepts, model selection, preprocessing techniques, and evaluation metrics with practical examples.

Data Science Cheatsheet
Data Science Cheatsheet

A comprehensive cheat sheet covering essential concepts, tools, and techniques in Data Science. It provides a quick reference for machine learning algorithms, data manipulation, statistical methods, and more.

Machine Learning Cheat Sheet
Machine Learning Cheat Sheet

A comprehensive cheat sheet covering fundamental machine learning concepts, algorithms, and techniques. Useful for quick reference and understanding key aspects of machine learning workflows.

Artificial Intelligence Cheat Sheet
Artificial Intelligence Cheat Sheet

A comprehensive cheat sheet covering essential Artificial Intelligence concepts, algorithms, and techniques. This guide is designed to provide a quick reference for AI practitioners and students.

PyTorch Cheat Sheet
PyTorch Cheat Sheet

A comprehensive cheat sheet for PyTorch, covering essential concepts, modules, and functions for building and training neural networks.

Keras Cheat Sheet
Keras Cheat Sheet

A concise cheat sheet for Keras, covering fundamental concepts, common layers, model building, training, and evaluation techniques for deep learning.

TensorFlow Cheat Sheet
TensorFlow Cheat Sheet

A quick reference guide to TensorFlow, covering its core concepts, common operations, and essential functions for building and training machine learning models.

ML
ML

A concise cheat sheet outlining the key concepts, algorithms, and differences between supervised and unsupervised learning methods in machine learning.

ML Cheatsheet
ML Cheatsheet

A comprehensive cheat sheet covering core machine learning algorithms, evaluation metrics, and essential concepts for interview preparation. Includes supervised, unsupervised learning, deep learning and NLP.

ML Cheatsheet
ML Cheatsheet

✅ 1. Supervised Learning • Regression o Linear Regression o Logistic Regression o Polynomial Regression o Ridge Regression o Lasso Regression o ElasticNet o Support Vector Machines (SVM) o Decision Trees o Random Forest • Classification o Logistic Regression o K-Nearest Neighbors (KNN) o Support Vector Machines (SVM) o Decision Trees o Random Forest o Naive Bayes o Confusion Matrix o Stochastic Gradient Descent o Gradient Boosting o AdaBoost o XGBoost o LightGBM o CatBoost ________________________________________ 🔍 2. Unsupervised Learning • Clustering 🔹 1. Centroid-Based Clustering • K-Means • K-Medoids • Mean-Shift ________________________________________ 🔹 2. Density-Based Clustering • DBSCAN • OPTICS • HDBSCAN ________________________________________ 🔹 3. Hierarchical Clustering • Agglomerative Clustering • BIRCH (Balanced Iterative Reducing and Clustering using Hierarchies) • Affinity Propagation ________________________________________ 🔹 4. Distribution-Based Clustering • Gaussian Mixture Models (GMM) • Dimensionality Reduction o PCA (Principal Component Analysis) o t-SNE o UMAP o ICA (Independent Component Analysis) o LDA (Linear Discriminant Analysis) ________________________________________ 🔁 3. Semi-Supervised Learning • Self-Training • Label Propagation • Label Spreading ________________________________________ 🔄 4. Reinforcement Learning • Q-Learning • Deep Q-Networks (DQN) • SARSA • Policy Gradient Methods • Actor-Critic • Proximal Policy Optimization (PPO) • Deep Deterministic Policy Gradient (DDPG) ________________________________________ 🧠 5. Deep Learning Algorithms 🔹 1. Feedforward Networks (FNN) • Multilayer Perceptron (MLP) • Deep Neural Networks (DNN) ________________________________________ 🔹 2. Convolutional Neural Networks (CNN) • LeNet • AlexNet • VGGNet • GoogLeNet (Inception) • ResNet • DenseNet • EfficientNet • MobileNet • SqueezeNet ________________________________________ 🔹 3. Recurrent Neural Networks (RNN) • Vanilla RNN • Long Short-Term Memory (LSTM) • Gated Recurrent Unit (GRU) • Bidirectional RNN • Deep RNNs • Echo State Networks (ESN) ________________________________________ 🔹 4. Attention-Based Models / Transformers • Transformer • BERT • GPT (GPT-1, GPT-2, GPT-3, GPT-4) • RoBERTa • ALBERT • XLNet • T5 • DistilBERT • Vision Transformer (ViT) • Swin Transformer • DeiT • Performer • Longformer ________________________________________ 🔹 5. Autoencoders • Vanilla Autoencoder • Sparse Autoencoder • Denoising Autoencoder • Contractive Autoencoder • Variational Autoencoder (VAE) ________________________________________ 🔹 6. Generative Adversarial Networks (GANs) • Vanilla GAN • Deep Convolutional GAN (DCGAN) • Conditional GAN (cGAN) • CycleGAN • StyleGAN • Pix2Pix • BigGAN • StarGAN • WGAN (Wasserstein GAN) • WGAN-GP ________________________________________ 🔹 7. Reinforcement Learning (Deep RL) • Deep Q-Network (DQN) • Double DQN • Dueling DQN • Policy Gradient • REINFORCE • Actor-Critic • A3C (Asynchronous Advantage Actor-Critic) • PPO (Proximal Policy Optimization) • DDPG (Deep Deterministic Policy Gradient) • TD3 (Twin Delayed DDPG) • SAC (Soft Actor-Critic)

ML Cheatsheet
ML Cheatsheet

A comprehensive cheat sheet covering various machine learning algorithms, including supervised, unsupervised, semi-supervised, and reinforcement learning, along with deep learning architectures.