
Discrete Functions Essentials
An essential guide to discrete functions for students of computer science, mathematics, and engineering. This cheat sheet covers core definitions,
types of functions, sequences, special functions, and asymptotic growth, providing clear examples and key insights.

Foundational Concepts

FUNCTION BASICS

Definition: A discrete function f: A \to B maps each element from a discrete

domain A to exactly one element in a discrete codomain B.

Notation:
A: Domain (set of inputs)

B: Codomain (set of possible outputs)

f(a): Image of a

Range: {f(a) \mid a \in A} (subset of codomain)

One-to-One (Injective): Every distinct element in the domain maps to a

distinct element in the codomain.

No two domain elements map to the same codomain element.

\forall a_1, a_2 \in A, f(a_1) = f(a_2) \implies a_1 = a_2

Example: f: \mathbb{Z} \to \mathbb{Z}, f(x) = x+1.

If x_1+1 = x_2+1, then x_1 = x_2. This is one-to-one.

Non-example: g: \mathbb{Z} \to \mathbb{Z}, g(x) = x^2.

g(2)=4, g(-2)=4. Not one-to-one.

Onto (Surjective): Every element in the codomain is the image of at least

one element in the domain.

The range of the function is equal to its codomain.

\forall b \in B, \exists a \in A \text{ such that } f(a) = b

Example: f: \mathbb{Z} \to \mathbb{Z}, f(x) = x-3.

For any y \in \mathbb{Z}, we can find x = y+3 \in \mathbb{Z} such that

f(x)=y. This is onto.

Non-example: g: \mathbb{Z} \to \mathbb{N}_0, g(x) = |x|.

Codomain is non-negative integers. Only non-negative integers are in

the range. This is onto.

Bijective (One-to-One Correspondence): A function that is both one-to-one

and onto.

Each element in the domain maps to exactly one unique element in the

codomain, and every element in the codomain has exactly one pre-

image in the domain.

Example: f: \mathbb{Z} \to \mathbb{Z}, f(x) = x+5.

This function is both one-to-one (as shown with x+1) and onto (as

shown with x-3). Thus, it’s bijective.

Importance: Bijective functions have inverse functions.

Function Composition: (g \circ f)(x) = g(f(x)). Applies f first, then g.

Domain of g must contain the range of f.

Example: f(x) = x+1, g(x) = x^2.

(g \circ f)(x) = (x+1)^2

(f \circ g)(x) = x^2+1

Note: (g \circ f)(x) \ne (f \circ g)(x) usually.

Key Insight: Understanding if a function is one-to-one, onto, or bijective is

crucial for inverse functions, counting arguments (cardinality), and

cryptographic applications.

SEQUENCES & RECURSIVE FUNCTIONS

Sequence Definition: An ordered

list of elements. Can be finite or

infinite.

Often defined by a function a:

\mathbb{N} \to S, where a_n is

the n-th term.

Arithmetic Sequence: Each term is

found by adding a constant (common

difference d) to the previous term.

Formula: a_n = a_1 + (n-1)d

Example (Arithmetic): Sequence: 2,

5, 8, 11, \dots

a_1 = 2, Common difference d

= 3.

a_n = 2 + (n-1)3

Geometric Sequence: Each term is

found by multiplying the previous

term by a constant (common ratio r).

Formula: a_n = a_1 \cdot r^{n-1}

Example (Geometric): Sequence: 3,

6, 12, 24, \dots

a_1 = 3, Common ratio r = 2.

a_n = 3 \cdot 2^{n-1}

Recurrence Relation: Defines a term

in a sequence based on one or more

preceding terms.

Requires initial conditions (base

cases).

Fibonacci Sequence: A classic

example of a recurrence relation.

F_n = F_{n-1} + F_{n-2} for n

\ge 2

Initial conditions: F_0 = 0, F_1 =

1

Sequence: 0, 1, 1, 2, 3, 5, 8, 13,

\dots

Solving Recurrence Relations (Brief):

1. Iteration: Compute terms until a

pattern emerges.

2. Characteristic Equation: For

linear homogeneous relations.

3. Generating Functions: A more

general approach.

Iteration vs. Recursion
(Programming Context):

Iteration: Uses loops (for,

while) to repeat a process.

def factorial_iter(n):

 res = 1

 for i in range(1, n +

1):

 res *= i

 return res

Recursion: A function calls itself

to solve smaller subproblems.

def factorial_rec(n):

 if n == 0:

 return 1

 else:

 return n *

factorial_rec(n - 1)

Tail Recursion: A special form

where the recursive call is the last

operation. Can often be optimized

by compilers into iteration.

Common Pitfall: Forgetting base

cases in recurrence relations or

recursive functions leads to infinite

loops or incorrect results.

Page 1 of 3 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/1204-discrete-functions-essentials-cheatsheet
http://cheatsheetshero.com/user/all/1204-discrete-functions-essentials-cheatsheet
http://cheatsheetshero.com/user/all/1204-discrete-functions-essentials-cheatsheet
https://cheatsheetshero.com/

Special Functions & Asymptotic Analysis

PIECEWISE & STEP FUNCTIONS

Piecewise Function: Defined by multiple sub-

functions, each applied to a different interval

of the domain.

Syntax: Defined with curly braces and

conditions.

Example:
f(x) = \begin{cases} x^2 &

\text{if } x < 0 \\ x & \text{if

} x \ge 0 \end{cases}

f(-3) = (-3)^2 = 9

f(5) = 5

Floor Function (Greatest Integer Function):
\lfloor x \rfloor

Returns the largest integer less than or

equal to x.

Rounds down to the nearest integer.

Examples:
\lfloor 3.14 \rfloor = 3

\lfloor 7 \rfloor = 7

\lfloor -2.5 \rfloor = -3

\lfloor 0.99 \rfloor = 0

Ceiling Function (Least Integer Function):
\lceil x \rceil

Returns the smallest integer greater than

or equal to x.

Rounds up to the nearest integer.

Examples:
\lceil 3.14 \rceil = 4

\lceil 7 \rceil = 7

\lceil -2.5 \rceil = -2

\lceil 0.01 \rceil = 1

Properties of Floor/Ceiling:
x-1 < \lfloor x \rfloor \le x

x \le \lceil x \rceil < x+1

\lfloor x+n \rfloor = \lfloor x \rfloor + n for

integer n

\lceil x+n \rceil = \lceil x \rceil + n for

integer n

Applications: Used in

computer science for array

indexing, memory

allocation, and time

complexity analysis.

Key Insight: Floor and ceiling functions are

crucial for discretizing continuous values,

which is fundamental in many computational

algorithms where only integer quantities are

meaningful (e.g., number of blocks, number of

iterations).

MODULAR ARITHMETIC FUNCTIONS

Modulo Operator (mod): a \pmod n

Returns the remainder when

integer a is divided by integer n

(where n > 0).

The result is always in the range

[0, n-1].

a = qn + r, where r = a \pmod n

Function: f(x) = x \pmod n

Domain: Integers \mathbb{Z}

Codomain: {0, 1, \dots, n-1}

This function maps any integer

to one of the n possible

remainders.

Examples:
17 \pmod 5 = 2 (since 17 = 3

\cdot 5 + 2)

25 \pmod 5 = 0 (since 25 = 5

\cdot 5 + 0)

-8 \pmod 5 = 2 (since -8 = -2

\cdot 5 + 2)

Note on Negative Numbers:
Different programming languages

might handle negative numbers

differently for the % operator. In

mathematics, the result of a \pmod

n is always non-negative.

Congruence Relation: a \equiv b

\pmod n

Means a and b have the same

remainder when divided by n.

Equivalent to saying n divides (a-

b), i.e., a-b = kn for some integer

k.

Example:
17 \equiv 2 \pmod 5

-8 \equiv 2 \pmod 5

10 \equiv 0 \pmod 5

Applications in Computer Science:
Hashing: Maps data to fixed-size

array indices (hash table

buckets). index = hash(key) %

array_size

Cryptography: RSA, Diffie-

Hellman rely heavily on modular

exponentiation and modular

inverse.

Cyclic Data Structures: Ring

buffers, circular arrays.

Time and Date Calculations: E.g.,

finding the day of the week.

Example (Hashing): If a hash table

has 10 buckets, and hash(key)

returns 12345, then 12345 % 10 =

5 . The item goes into bucket 5.

Common Pitfall: Forgetting that

modulo results are always non-

negative in pure mathematics, unlike

some programming language

implementations where (-a) % n

might be negative.

Page 2 of 3 https://cheatsheetshero.com

https://cheatsheetshero.com/

GROWTH OF FUNCTIONS

Asymptotic Analysis: Studies the behavior of functions as their input

(usually n) approaches infinity.

Crucial for analyzing algorithm efficiency (time and space complexity).

Big-O Notation (O(g(n))): Upper Bound

f(n) \in O(g(n)) if there exist positive constants c and n_0 such that 0 \le

f(n) \le c \cdot g(n) for all n \ge n_0.

Describes the worst-case growth rate.

Examples of Big-O:
5n+3 \in O(n) (Linear)

2n^2 + 100n \in O(n^2) (Quadratic)

\log_2 n + 5 \in O(\log n) (Logarithmic)

2^n + n^{10} \in O(2^n) (Exponential)

Other Notations:
Big-Omega (\Omega(g(n))): Lower Bound (best-case or minimum

growth).

Big-Theta (\Theta(g(n))): Tight Bound (average-case or exact growth

when upper and lower bounds match).

Growth Rate Hierarchy (from slowest to fastest):

1. O(1) (Constant)

2. O(\log n) (Logarithmic)

3. O(\sqrt{n}) (Square Root)

4. O(n) (Linear)

5. O(n \log n) (Linearithmic)

6. O(n^k) for k > 1 (Polynomial, e.g., O(n^2), O(n^3))

7. O(k^n) for k > 1 (Exponential, e.g., O(2^n))

8. O(n!) (Factorial)

Visualizing Growth:
Constant: Flat line.

Logarithmic: Grows very slowly.

Linear: Straight line with positive slope.

Polynomial: Curves upwards increasingly steeply.

Exponential/Factorial: Explodes rapidly.

Rules for Big-O:
Constants: Ignore constant factors. O(c \cdot f(n)) = O(f(n))

Sums: Keep the dominant term. O(f(n) + g(n)) = O(\max(f(n), g(n)))

Products: Multiply the complexities. O(f(n) \cdot g(n)) = O(f(n)) \cdot

O(g(n))

Polynomials: The highest degree term dominates. O(n^k + n^j) = O(n^k)

if k>j

Example (Rule Application):
O(3n^2 + 5n \log n + 100) = O(3n^2) = O(n^2)

Practical Implications: An algorithm with O(n) complexity is generally

preferred over O(n^2) for large inputs, and O(n^2) over O(2^n).

Key Insight: Asymptotic notation provides a high-level, language-

independent way to compare the efficiency of algorithms, focusing on how

their performance scales with increasing input size.

Page 3 of 3 https://cheatsheetshero.com

https://cheatsheetshero.com/

