
Discrete Mathematics Essentials
A comprehensive cheat sheet designed for undergraduate students covering core concepts in discrete mathematics, including logic, set theory,
relations, algorithms, graph theory, combinatorics, and proof techniques. Simplifying abstract topics with clear definitions, formulas, examples, and
common pitfalls.

Logic & Set Theory Foundations

LOGIC & PROPOSITIONAL CALCULUS

Operators
¬P (NOT): Negation. True if P is false.

P ∧ Q (AND): Conjunction. True if P and Q are true.

P ∨ Q (OR): Disjunction. True if P or Q (or both) are true.

Operators (Cont.)
P → Q (IMPLIES): Implication. False only if P is true and Q is false.

If P, then Q

P ↔ Q (IFF): Biconditional. True if P and Q have same truth value.

P if and only if Q

Truth Tables
Shows all possible truth values.

P | Q | P → Q

--|---|-------

T | T | T

T | F | F

F | T | T

F | F | T

Logical Equivalences
P ≡ Q if same truth table.

De Morgan’s Laws:
¬(P ∧ Q) ≡ ¬P ∨ ¬Q

¬(P ∨ Q) ≡ ¬P ∧ ¬Q

Distributive Laws:
P ∧ (Q ∨ R) ≡ (P ∧ Q) ∨ (P ∧ R)

P ∨ (Q ∧ R) ≡ (P ∨ Q) ∧ (P ∨ R)

Rules of Inference
Valid arguments to derive conclusions.

Modus Ponens:
((P → Q) ∧ P) → Q

Modus Tollens:
((P → Q) ∧ ¬Q) → ¬P

Rules of Inference (Cont.)
Hypothetical Syllogism:
((P → Q) ∧ (Q → R)) → (P → R)

Disjunctive Syllogism:
((P ∨ Q) ∧ ¬P) → Q

Tautology: Always true (e.g., P ∨ ¬P)

Contradiction: Always false (e.g., P ∧ ¬P)

Contingency: Neither (e.g., P → Q)

Example: Prove P → Q ≡ ¬P ∨ Q

Construct truth table for ¬P ∨ Q and compare to P → Q .

Key Insight: The implication P → Q is often the trickiest. Remember it’s only

false when P is true and Q is false. Think of it as a promise: if the premise

is true, the conclusion must follow. If the premise is false, the promise is not

broken, so the implication is true regardless of the conclusion.

SETS & FUNCTIONS

Set Notation
A = {1, 2, 3} : Roster method

B = {x | x is even} : Set-builder

∅ or {} : Empty set

U : Universal set

|A| : Cardinality (number of elements)

A ⊆ B : A is a subset of B

A ⊂ B : A is a proper subset of B

Set Operations
A ∪ B (Union): Elements in A or B or both.

A ∩ B (Intersection): Elements common to A and B.

A \ B (Difference): Elements in A but not in B.

Aᶜ (Complement): Elements in U but not in A.

Example: A={1,2,3}, B={3,4,5}

A ∪ B = {1,2,3,4,5}

A ∩ B = {3}

A \ B = {1,2}

Power Set
P(A) or 2^A : The set of all subsets of A.

|P(A)| = 2^|A|

Example: A = {a, b}

P(A) = {∅, {a}, {b}, {a, b}}

|P(A)| = 2^2 = 4

Cartesian Product
A × B = {(a, b) | a ∈ A, b ∈ B} . Ordered pairs.

|A × B| = |A| × |B|

Example: A={1,2}, B={x,y}

A × B = {(1,x), (1,y), (2,x), (2,y)}

|A × B| = 2 × 2 = 4

Functions f: A → B

A relation where each input from A has exactly one output in B.

Domain (A): Input values.

Codomain (B): Possible output values.

Range (f(A)): Actual output values (f(A) ⊆ B).

Types of Functions
Injective (One-to-one): If f(a₁) = f(a₂) then a₁ = a₂ . No two

elements map to the same image.

Surjective (Onto): For every b ∈ B , there exists an a ∈ A such that

f(a) = b . Every element in B is mapped to.

Bijective (One-to-one correspondence): Both injective and surjective.

Implies an inverse function exists.

Common Mistake: Confusing the codomain with the range of a function. The

range is a subset of the codomain, containing only the values actually

produced by the function.

Page 1 of 4 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/1208-discrete-mathematics-essentials-cheatsheet
http://cheatsheetshero.com/user/all/1208-discrete-mathematics-essentials-cheatsheet
http://cheatsheetshero.com/user/all/1208-discrete-mathematics-essentials-cheatsheet
https://cheatsheetshero.com/

Relations & Algorithms

RELATIONS

Definition: A relation R from set A to B is a subset of A × B . If A=B ,

it’s a relation on A .

Properties of Relations (on set A)
Reflexive: (a, a) ∈ R for all a ∈ A . (Loops on all vertices in

digraph).

Symmetric: If (a, b) ∈ R then (b, a) ∈ R . (If edge a→b , then

b→a).

Transitive: If (a, b) ∈ R and (b, c) ∈ R then (a, c) ∈ R . (If

a→b and b→c , then a→c).

Antisymmetric: If (a, b) ∈ R and (b, a) ∈ R then a = b . (Only

(a,a) pairs can be symmetric, no two-way distinct edges).

Equivalence Relation: Reflexive, Symmetric, AND Transitive.

Partitions a set into disjoint equivalence classes.

Example: R = {(a,b) | a ≡ b (mod n)} on integers. Each class

[a] contains integers congruent to a modulo n .

Partial Order Relation: Reflexive, Antisymmetric, AND Transitive.

Elements may not be comparable.

Example: (A, ≤) for integers, (P(S), ⊆) for power sets.

A set with a partial order is called a Poset (Partially Ordered Set).

Representations
Matrix (Boolean): M_R[i][j] = 1 if (a_i, a_j) ∈ R , else 0 .

Digraph (Directed Graph): Vertices for elements, directed edges for

related pairs.

Example: A={1,2,3}, R={(1,1), (1,2), (2,3)}

M_R = [[1,1,0],[0,0,1],[0,0,0]]

Key Insight: When checking properties, draw small examples or use matrix

multiplication (M_R * M_R) for transitivity. Remember that for a relation to

be symmetric, if an edge exists from A to B, an edge MUST exist from B to A.

For antisymmetric, if an edge exists from A to B (and A≠B), an edge

CANNOT exist from B to A.

ALGORITHMS & COMPLEXITY

Algorithm Analysis: Measures efficiency (time/space) based on input size

n .

Asymptotic Notations
Describe function growth as n → ∞ .

Big-O (O): Upper Bound

f(n) = O(g(n)) if |f(n)| ≤ C|g(n)| for n > k .

f grows no faster than g .

Big-Omega (Ω): Lower Bound

f(n) = Ω(g(n)) if |f(n)| ≥ C|g(n)| for n > k .

f grows no slower than g .

Big-Theta (Θ): Tight Bound

f(n) = Θ(g(n)) if f(n) = O(g(n)) AND f(n) = Ω(g(n)) .

f grows at the same rate as g .

Common Growth Rates (Slowest to Fastest)
O(1) : Constant (e.g., array element access)

O(log n) : Logarithmic (e.g., binary search)

O(n) : Linear (e.g., sequential search)

O(n log n) : Log-linear (e.g., merge sort)

Common Growth Rates (Cont.)
O(n^2) : Quadratic (e.g., nested loops, bubble sort)

O(n^k) : Polynomial

O(2^n) : Exponential (e.g., brute-force subset sum)

O(n!) : Factorial (e.g., brute-force TSP)

Recurrence Relations
Define a sequence where each term depends on previous terms. Used for

recursive algorithms.

Common Methods:
Iteration: Expand the recurrence, find a pattern, sum it up.

Master Theorem: For T(n) = aT(n/b) + f(n) .

Compare f(n) with n^(log_b a) .

Recurrence Examples
Binary Search: T(n) = T(n/2) + O(1) -> O(log n)

Merge Sort: T(n) = 2T(n/2) + O(n) -> O(n log n)

Fibonacci (naive): T(n) = T(n-1) + T(n-2) + O(1) -> O(φ^n)

where φ is the golden ratio.

Common Mistake: Treating Big-O as a precise measurement rather than an

upper bound. f(n) = O(g(n)) does not mean f(n) is exactly g(n) . It

means f(n) is at most proportional to g(n) for large n . Only Big-Theta

implies a tight bound.

Page 2 of 4 https://cheatsheetshero.com

https://cheatsheetshero.com/

Graphs, Counting & Proofs

GRAPH THEORY

Definitions
Graph G = (V, E) : V =vertices,

E =edges.

Simple Graph: No loops (edge from vertex to

itself), no multiple edges between same pair.

Multigraph: Allows multiple edges.

Directed Graph (Digraph): Edges have

direction.

Weighted Graph: Edges have values

(weights).

Degree of a Vertex (deg(v)): Number of

edges incident to v (double for loops).

Paths & Cycles
Path: Sequence of distinct vertices where

consecutive vertices are connected by an

edge.

Cycle: A path that starts and ends at the

same vertex, visiting other vertices at most

once.

Connectivity
Connected (Undirected): Path between any

two vertices.

Strongly Connected (Directed): Path from

u to v AND v to u for any u,v .

Trees: Connected, acyclic (no cycles) undirected

graph.

n vertices, n-1 edges.

Unique simple path between any two

vertices.

Acyclic implies no cycles.

A Forest is a collection of disjoint trees.

Eulerian Paths/Circuits
Visits every edge exactly once.

Circuit: Starts/ends at same vertex.

Path: Starts/ends at different vertices.

Conditions (Undirected Graphs):
Circuit exists: All vertices have even

degree.

Path exists: Exactly two vertices have odd

degree.

Hamiltonian Paths/Cycles
Visits every vertex exactly once.

Cycle: Starts/ends at same vertex.

Path: Starts/ends at different vertices.

Note: No simple condition like Euler’s. Generally

an NP-complete problem to find.

Key Insight: For Eulerian paths/circuits, focus

solely on the degrees of vertices. For Hamiltonian

paths/cycles, it’s about covering all vertices. Trees

are fundamental: think of them as graphs without

redundant connections that would form cycles.

COMBINATORICS & COUNTING

Fundamental Principles
Sum Rule: If a task can be done in n_1

ways OR n_2 ways (disjoint), total ways

n_1 + n_2 .

Example: Choose a fruit: 3 apples or 4

oranges = 7 options.

Product Rule: If a task has n_1 ways for the

first step and n_2 ways for the second,

total ways n_1 × n_2 .

Example: Choose shirt (3) and pants (2)

= 6 outfits.

Permutations
Arrangement of k items from n distinct items

where order matters.

P(n, k) = n! / (n-k)!

Example: Number of ways to arrange 3 books

from 5 unique books:

P(5, 3) = 5! / (5-3)! = 5! / 2! = 120 / 2

= 60

Combinations
Selection of k items from n distinct items

where order DOES NOT matter.

C(n, k) = n! / (k! * (n-k)!) = (n choose

k)

Example: Number of ways to choose 3 books

from 5 unique books:

C(5, 3) = 5! / (3! * 2!) = 120 / (6 * 2) =

10

Inclusion-Exclusion Principle
Used to count elements in unions of sets.

Two Sets:
|A ∪ B| = |A| + |B| - |A ∩ B|

Three Sets:
|A ∪ B ∪ C| = |A| + |B| + |C| - (|A ∩

B| + |A ∩ C| + |B ∩ C|) + |A ∩ B ∩ C|

Pigeonhole Principle
If N items are placed into K containers:

If N > K , at least one container must

contain more than one item.

Generally: At least one container must

contain ⌈N/K⌉ items.

Example: In any group of 13 people, at least two

were born in the same month (N=13 people,

K=12 months).

Common Mistake: Confusing permutations and

combinations. If the specific roles or positions

matter (e.g., president, VP, secretary), it’s a

permutation. If it’s just a group or a committee

where roles aren’t assigned, it’s a combination.

Permutation = Position, Combination = Choice.

Page 3 of 4 https://cheatsheetshero.com

https://cheatsheetshero.com/

PROOFS & MATHEMATICAL REASONING

Direct Proof
To prove P → Q :

1. Assume P is true.

2. Use definitions, axioms, logical equivalences,

and previously proven theorems to show Q

must be true.

Example: Prove that if n is an odd integer, then

n^2 is an odd integer.

Assume n is odd, so n = 2k + 1 for

some integer k .

Then n^2 = (2k + 1)^2 = 4k^2 + 4k + 1

= 2(2k^2 + 2k) + 1 .

Since (2k^2 + 2k) is an integer, n^2 is

odd.

Indirect Proof (Contraposition)
To prove P → Q , prove its contrapositive ¬Q →

¬P .

1. Assume ¬Q is true.

2. Show that ¬P must be true.

Example: Prove that if n^2 is an even integer,

then n is an even integer.

Contrapositive: If n is odd, then n^2 is

odd.

(This is the same example as Direct Proof;

the proof is identical once the contrapositive

is stated).

Proof by Contradiction
To prove P :

1. Assume ¬P is true.

2. Derive a contradiction (e.g., R ∧ ¬R), which

means the initial assumption ¬P must be

false.

3. Therefore, P must be true.

Example: Prove √2 is irrational.

Assume √2 is rational. So √2 = a/b for

integers a, b with no common factors, b

≠ 0 .

2 = a^2/b^2 => 2b^2 = a^2 . Thus a^2

is even, implying a is even. Let a = 2k .

2b^2 = (2k)^2 = 4k^2 => b^2 = 2k^2 .

Thus b^2 is even, implying b is even.

Contradiction! a and b have 2 as a

common factor, but we assumed no

common factors.

Proof by Induction
To prove P(n) for all integers n ≥ base_case .

1. Base Case: Show P(base_case) is true

(usually P(0) or P(1)).

2. Inductive Hypothesis (IH): Assume P(k) is

true for an arbitrary integer k ≥ base_case .

3. Inductive Step (IS): Show that P(k+1) is

true, using the inductive hypothesis.

Strong Induction: IH assumes P(j) is true for

ALL integers j such that base_case ≤ j ≤ k .

Used when P(k+1) depends on more than just

P(k) .

Tips for Proofs:
Understand Definitions: Know exactly what

terms mean.

Start & End: Clearly state what you are

assuming and what you need to show.

Structure: Follow the logical flow of the

proof type.

Scratchpad: Do scratch work to find the path

before writing the formal proof.

Induction: Be meticulous with the inductive

step. Clearly use the IH to transform

P(k+1) .

Common Mistake: In induction, assuming

P(k+1) is true at the start of the inductive step

instead of proving it. The goal is to derive

P(k+1) from P(k) (or P(j) for strong

induction).

Page 4 of 4 https://cheatsheetshero.com

https://cheatsheetshero.com/

