CHEAT

Data Science Cheatsheet

A comprehensive cheat sheet covering essential concepts, tools, and techniques in Data Science. It provides a quick reference for machine learning algorithms, data manipulation, statistical methods, and more.

Fundamentals

Key Concept	S
-------------	---

Common Algorithms Supervised Linear Regression: Predicts a continuous outcome using a linear equation. Learning from labeled data to predict outcomes. Learning Examples: Regression, Classification. Logistic Regression: Predicts a binary outcome using a logistic function. Unsupervised Discovering patterns in unlabeled data. Decision Trees: Partitions data into subsets based on feature values to make Learning Examples: Clustering, Dimensionality Reduction. predictions. Reinforcement Training an agent to make decisions in an environment Random Forest: An ensemble of decision trees that averages predictions to Learning to maximize a reward. improve accuracy. Balancing model complexity to minimize both bias **Bias-Variance** Support Vector Machines (SVM): Finds the optimal hyperplane to separate Tradeoff (underfitting) and variance (overfitting). data into classes. Cross-Validation Evaluating model performance on multiple subsets of K-Nearest Neighbors (KNN): Classifies data based on the majority class the data to ensure generalization. among its k nearest neighbors. Feature Creating new features or transforming existing ones K-Means Clustering: Partitions data into k clusters based on distance to Engineering to improve model accuracy. cluster centroids.

Python for Data Science

Data Manipulation with Pandas

Data Visualization with Matplotlib and Seaborn

Creating a DataFrame	<pre>import pandas as pd data = {'col1': [1, 2], 'col2': [3, 4]} df = pd.DataFrame(data)</pre>
Selecting Columns	df['col1'] df[['col1', 'col2']]
Filtering Rows	df[df['col1'] > 1]
Grouping and Aggregation	df.groupby('col1').me an()
Handling Missing Data	df.dropna() df.fillna(0)

Seabolli	
Basic Plotting with Matplotlib	<pre>import matplotlib.pyplot as plt plt.plot([1, 2, 3, 4]) plt.show()</pre>
Scatter Plot with Seaborn	<pre>import seaborn as sns sns.scatterplot(x='co l1', y='col2', data=df) plt.show()</pre>
Histogram with Seaborn	<pre>sns.histplot(df['col1 ']) plt.show()</pre>
Box Plot with Seaborn	<pre>sns.boxplot(x='col1', y='col2', data=df) plt.show()</pre>

Scikit-learn for Machine Learning

Training a Model from sklearn.linear_model import

LinearRegression model = LinearRegression() model.fit(X_train, y_train)

Making Predictions

y_pred = model.predict(X_test)

Model Evaluation

from sklearn.metrics import mean_squared_error mse = mean_squared_error(y_test, y_pred) print(mse)

Data Preprocessing

from sklearn.preprocessing import StandardScaler scaler = StandardScaler() X_scaled = scaler.fit_transform(X)

Train-Test Split

from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)

Statistical Methods

Descriptive Statistics

Mean	Average value of a dataset. Formula: \$ \frac{\sum_{i=1}^{n} x_i}{n} \$
Median	Middle value of a sorted dataset.
Mode	Most frequent value in a dataset.
Standard Deviation	Measure of the spread of data around the mean. Formula: \$ \sqrt{\frac{\sum_{i=1}^{n} (x_i - \mu)^2}{n}} \$
Variance	Square of the standard deviation. Formula: \$ \frac{\sum_{i=1}^{n} (x_i - \mu)^2}{n} \$

Model Evaluation and Tuning

Evaluation Metrics

Inferential Statistics

Hypothesis Testing	A method for testing a claim or hypothesis about a population parameter.
P-value	Probability of obtaining results as extreme as the observed results, assuming the null hypothesis is true.
Confidence Interval	Range of values likely to contain the true population parameter with a certain level of confidence.
T-test	Used to compare the means of two groups.
ANOVA	Used to compare the means of more than two groups.

Hyperparameter Tuning

Grid Search: Exhaustively search a specified subset of the hyperparameters of a learning algorithm.

Randomized Search: Sample a given number of candidates from a hyperparameter search space.

Bayesian Optimization: Uses Bayesian inference to find the hyperparameters that optimize a given metric.

Cross-Validation: Evaluate model performance on multiple subsets of the data to ensure generalization.

Accuracy	Fraction of correctly classified instances. Formula: \$ \frac{\text{Number of correct predictions}} {\text{Total number of predictions}} \$
Precision	Fraction of true positives among predicted positives. Formula: \$ \frac{\text{True Positives}}{True Positives + False Positives}} \$
Recall	Fraction of true positives among actual positives. Formula: \$ \frac{\text{True Positives}}{True Positives + False Negatives}} \$
F1-Score	Harmonic mean of precision and recall. Formula: \$ 2 \times \frac{\text{Precision} \times \text{Recall}}{\text{Precision + Recall}} \$
AUC-ROC	Area under the Receiver Operating Characteristic curve, measures the ability of a classifier to distinguish between classes.
Mean Squared Error (MSE)	Average squared difference between predicted and actual values. Formula: \$ \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 \$
R-squared	$\label{eq:proportion} Proportion of variance in the dependent variable that can be predicted from the independent variables. Formula: $ 1 - \frac{\sum_{i=1}^{n} (y_i - \hat_{y})^2}{(y_i - \hat_{y})^2} $ (y_i - \bar_{y})^2 $$