
Algorithms Cheat Sheet
A quick reference guide to common algorithms and data structures in computer science, covering time complexity, pseudocode, and applications.

Sorting Algorithms

Searching Algorithms

Comparison Sorts

Bubble

Sort

Repeatedly steps through the list, compares adjacent elements

and swaps them if they are in the wrong order.

Time Complexity: O(n^2)

Insertion

Sort

Builds the final sorted array (or list) one item at a time. It is

much less efficient on large lists than more advanced

algorithms.

Time Complexity: O(n^2)

Selection

Sort

Divides the input list into two parts: a sorted sublist of items

which is built up from left to right at the front (left) of the list

and a sublist of the remaining unsorted items that occupy the

rest of the list.

Time Complexity: O(n^2)

Merge

Sort

A divide and conquer algorithm that divides the input array into

two halves, calls itself for the two halves, and then merges the

two sorted halves.

Time Complexity: O(n log n)

Quick Sort A divide and conquer algorithm that picks an element as pivot

and partitions the given array around the picked pivot.

Time Complexity: O(n log n) average, O(n^2) worst case

Heap Sort Heap sort involves building a Heap data structure from the

array and then repeatedly extracting the maximum element

from the Heap and placing it at the end of the array.

Time Complexity: O(n log n)

Non-Comparison Sorts

Counting

Sort

Works by counting the number of occurrences of each distinct

element in the input array.

Time Complexity: O(n + k), where k is the range of input

Radix Sort Sorts elements by processing individual digits. It groups

elements by the digit in the same position and repeats until all

digits have been processed.

Time Complexity: O(nk), where k is the number of digits

Bucket

Sort

Distributes the elements of an array into a number of buckets.

Each bucket is then sorted individually, either using a different

sorting algorithm, or by recursively applying the bucket sorting

algorithm.

Time Complexity: O(n + k) average, O(n^2) worst case

Basic Search Algorithms

Linear Search Sequentially checks each element of the list until a match is found or the whole list has been searched.

Time Complexity: O(n)

Binary Search Searches a sorted array by repeatedly dividing the search interval in half. Requires the input data to be sorted.

Time Complexity: O(log n)

Jump Search Like binary search, but jumps ahead by fixed steps. The optimal size of a block to be jumped is (\sqrt{n}).

Time Complexity: O((\sqrt{n}))

Interpolation Search An improvement over binary search for uniformly distributed data. It estimates the position of the required value.

Time Complexity: O(log log n) average, O(n) worst case

Page 1 of 2 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/156-algorithms-cheat-sheet
http://cheatsheetshero.com/user/all/156-algorithms-cheat-sheet
http://cheatsheetshero.com/user/all/156-algorithms-cheat-sheet
https://cheatsheetshero.com/


Graph Algorithms

Dynamic Programming

Basic Graph Traversal

Breadth-

First

Search

(BFS)

Traverses a graph level by level.

Starts at the root node and

explores all the neighbor nodes at

the present depth prior to moving

on to the nodes at the next depth

level.

Time Complexity: O(V + E), where

V is the number of vertices and E is

the number of edges.

Depth-

First

Search

(DFS)

Explores as far as possible along

each branch before backtracking. It

uses a stack to remember where to

go when it reaches a dead end.

Time Complexity: O(V + E)

Shortest Path Algorithms

Dijkstra’s

Algorithm

An algorithm for finding the

shortest paths between nodes in a

graph. For a given source node in

the graph, the algorithm finds the

shortest path between that node

and every other.

Time Complexity: O(V^2 + E) or

O(E log V) with a priority queue

Bellman-

Ford

Algorithm

Computes shortest paths from a

single source vertex to all of the

other vertices in a weighted

digraph. It is slower than Dijkstra’s

algorithm for the same problem,

but more versatile, as it is capable

of handling graphs in which some

of the edge weights are negative

numbers.

Time Complexity: O(V * E)

Floyd-

Warshall

Algorithm

An algorithm for finding shortest

paths in a weighted graph with

positive or negative edge weights

(but with no negative cycles). A

single execution of the algorithm

will find the lengths (summed

weights) of the shortest paths

between all pairs of vertices.

Time Complexity: O(V^3)

Minimum Spanning Tree Algorithms

Kruskal’s

Algorithm

A greedy algorithm that finds a

minimum spanning tree for a

weighted undirected graph. It finds

a subset of the edges that forms a

tree that includes every vertex,

where the total weight of all the

edges in the tree is minimized.

Time Complexity: O(E log E) or O(E

log V)

Prim’s

Algorithm

A greedy algorithm that finds a

minimum spanning tree for a

weighted undirected graph. It finds

a subset of the edges that forms a

tree that includes every vertex,

where the total weight of all the

edges in the tree is minimized.

Time Complexity: O(E + V log V)

using Fibonacci heap

Common Dynamic Programming Problems

Fibonacci Sequence

Calculating the nth Fibonacci number using dynamic programming to avoid redundant calculations.

Knapsack Problem

Given a set of items, each with a weight and a value, determine the number of each item to include in a collection so that the total weight is less than or equal

to a given limit and the total value is as large as possible.

Longest Common Subsequence (LCS)

Find the longest subsequence common to all sequences in a set of sequences (often just two sequences).

Edit Distance

The minimum number of edits (insertions, deletions, or substitutions) needed to transform one string into another.

Matrix Chain Multiplication

Finding the most efficient way to multiply a given sequence of matrices.

Page 2 of 2 https://cheatsheetshero.com

https://cheatsheetshero.com/

