CHEATHERO SHEETSHERO

A comprehensive cheat sheet covering essential concepts and formulas in Chemical Engineering, useful for quick reference and exam preparation.

Thermodynamics

Fundamental Concepts

Equations of State

First Law of Thermodynamics	 ΔU = Q - W ΔU: Change in internal energy Q: Heat added to the system W: Work done by the system 	Ideal Gas Law	 PV = nRT P: Pressure V: Volume n: Number of moles R: Ideal gas constant T: Temperature 	
Enthalpy (H)	H = U + PV • U: Internal energy • P: Pressure	Van der Waals Equation	 (P + a(n/V)²)(V - nb) = nRT a, b: Van der Waals constants 	
	• v. volume	Peng-Robinson	$P = (RT)/(V_m - b) -$	
Second Law of Thermodynamics	ΔS ≥ 0 (for a closed system) • ΔS: Change in entropy	Equation	 V_m: Molar volume a, b, α: Peng-Robinson parameters 	
Gibbs Free Energy G = H - TS		Thermodynamic Cycles		
(G)	 T: Temperature S: Entropy At constant T and P, ΔG < 0 for a spontaneous process. 	Carnot η = 1 Cycle • r • 1 • 7	- (Tc/Th) ŋ: Efficiency Гc: Cold reservoir temperature Гh: Hot reservoir temperature	
Helmholtz Free Energy (A)	 A = U - TS At constant T and V, ΔA < 0 for a spontaneous process. 	Rankine Used Cycle Inclue cond	in steam power plants. des pump, boiler, turbine, and enser.	
Heat Capacity	Cv = (∂U/∂T)v Cp = (∂H/∂T)p			

Fluid Mechanics

Fluid Properties

Fluid Statics

Density (ρ)	ρ = m/V • m: Mass • V: Volume
Viscosity (µ)	Measure of a fluid's resistance to flow.
Surface Tension (σ)	Energy required to increase the surface area of a liquid.

Pressure (P)	P = F/A • F: Force • A: Area
Hydrostatic Pressure	 P = ρgh ρ: Density g: Acceleration due to gravity h: Height
Buoyancy	Archimedes' principle: Buoyant force equals the weight of the fluid displaced.

Fluid Dynamics

Continuity Equation	 A1V1 = A2V2 (for incompressible fluids) A: Cross-sectional area V: Velocity
Bernoulli's Equation	 P + (1/2)pV^2 + pgh = constant P: Pressure p: Density V: Velocity g: Acceleration due to gravity h: Height
Navier-Stokes Equations	Equations describing the motion of viscous fluid substances.
Reynolds Number (Re)	 Re = (pVD)/µ p: Density V: Velocity D: Diameter µ: Viscosity
Friction Factor (f)	Used to calculate pressure drop in pipes.

Mass Transfer

Diffusion

Distillation

Fick's First Law J =	J = -D (dC/dx) • J: Diffusion flux • D: Diffusion coefficient • C: Concentration • x: Distance w ∂C/∂t = D (∂ ^{2C/∂x} 2)	Relative Volatility (α)	 α = (yA/xA) / (yB/xB) yA, yB: Vapor mole fractions of components A and B xA, xB: Liquid mole fractions of components A and B 	Stripping Factor (S)	 S = (mG)/L m: Slope of equilibrium line G: Gas flow rate L: Liquid flow rate
	C: Concentrationt: Time	McCabe- Thiele Method	Graphical method for designing distillation columns.		
 D: Diffusion coeffici x: Distance 	 D: Diffusion coefficient x: Distance 	Fenske Equation	N_min = log((xA,D/xB,D) * (xB,B/xA,B)) / log(α) • N_min: Minimum number of		
Mass Transfer Coefficient			 xA,D, xB,D: mole fractions 		
Mass Transfer	Relates the mass transfer rate		of A and B in distillate		

• xA,B, xB,B: mole fractions of A and B in bottoms

Absorption

Mass Transfer	Relates the mass transfer rate	
Coefficient (k)	to the concentration	
	difference.	
	N = k∆C	
	N: Mass transfer rate	
	 k: Mass transfer coefficient 	
	 ΔC: Concentration difference 	

Chemical Reaction Engineering

Reaction Kinetics		
Rate Law	 -rA = k CAⁿ -rA: Rate of disappearance of reactant A k: Rate constant CA: Concentration of A n: Order of reaction 	
Arrhenius Equation	 k = A exp(-Ea/RT) k: Rate constant A: Pre-exponential factor Ea: Activation energy R: Gas constant T: Temperature 	

Reactor	Types
reactor	19000

or Types

Batch Reactor	Closed system; reactants are mixed and allowed to react for a certain time.
Continuous Stirred-Tank Reactor (CSTR)	Continuous flow of reactants and products; perfectly mixed.
Plug Flow Reactor (PFR)	Continuous flow; no mixing in the axial direction.

Reactor Design Equations

CSTR Design Equation	 V = (FAO XA) / (-rA) V: Reactor volume FAO: Molar flow rate of A at inlet XA: Conversion of A -rA: Rate of disappearance of A
PFR Design Equation	 V = f(FAO dXA) / (-rA) V: Reactor volume FAO: Molar flow rate of A at inlet XA: Conversion of A -rA: Rate of disappearance of A Integration is performed over the range of conversion.