CHEAT

Transistors Cheat Sheet

A comprehensive guide to understanding and using transistors, covering their types, characteristics, and common applications.

Transistor Basics

Transistor Types

Bipolar Junction Transistor (BJT)	 Current-controlled current source. Two types: NPN and PNP. NPN: Current flows from collector to emitter when a small current is applied to the base. PNP: Current flows from emitter to collector when a small current is drawn from the base.
Field-Effect Transistor (FET)	 Voltage-controlled current source. Two main types: JFET and MOSFET. JFET: Junction Field-Effect Transistor. Depletion mode device. MOSFET: Metal-Oxide- Semiconductor Field-Effect Transistor. Enhancement or depletion mode. Includes N- channel and P-channel types.

Key Parameters

V_CE (Collector- Emitter Voltage)	Voltage between collector and emitter terminals (BJT).
I_C (Collector Current)	Current flowing through the collector terminal (BJT).
h_FE or β (Current Gain)	Ratio of collector current to base current (BJT). Indicates amplification capability.
V_GS (Gate- Source Voltage)	Voltage between gate and source terminals (FET).
I_D (Drain Current)	Current flowing through the drain terminal (FET).
V_th (Threshold Voltage)	Gate voltage required to turn on the MOSFET.

Operating Regions (BJT)

Cut-off Region: Transistor is OFF. No current flows from collector to emitter. Both junctions are reverse biased.

Active Region: Transistor acts as an amplifier. Collector current is proportional to base current. Base-emitter junction is forward biased, basecollector is reverse biased.

Saturation Region: Transistor is fully ON. Maximum current flows from collector to emitter. Both junctions are forward biased.

BJT Configurations and Biasing

BJT Configurations

Common Emitter is common to both F Emitter (CE) input and output. Provides high d voltage and current gain. Most common configuration. Common Collector is common to both Collector (CC) input and output. Provides high E / Emitter input impedance and low tl Follower output impedance. Used as a buffer. I_C ≈ I_E **Common Base** Base is common to both input (CB) and output. Provides high voltage gain and low current gain. Used in high-frequency divider network. applications.

Biasing Techniques

Fixed Bias : Simple but unstable. Highly dependent on transistor β.
I_B = (V_CC - V_BE) / R_B I_C = β * I_B
Emitter Bias : More stable than fixed bias due to he emitter resistor providing negative feedback.
$I_E \approx V_{EE} / R_E$

Voltage Divider Bias: Most stable biasing technique. Sets the base voltage using a voltage

 $V_B = V_CC * (R_2 / (R_1 + R_2))$ $I_C \approx V_E / R_E = (V_B - V_BE) / R_E$

Small Signal Model

The small-signal model is used to analyze the AC behavior of transistor circuits. It replaces the transistor with an equivalent circuit composed of resistors and dependent sources.

Key parameters:

- r_e : dynamic emitter resistance
- r_π : dynamic base resistance
- g_m : transconductance

FET Characteristics and Applications

Operates in the depletion

mode. The channel is initially

applying a reverse voltage to

Can operate in enhancement

Enhancement Mode:

applying a voltage to

closed and is opened by

Channel is initially

open and is pinched off by

the gate-source junction.

or depletion mode.

the gate. Depletion Mode: Channel is initially open and is pinched off by applying a voltage to

the gate.

Similar to NPN and PNP for

BJTs, N-channel uses electrons as charge carriers, while P-channel uses holes.

FET Types

JFET (Junction

MOSFET (Metal-

Semiconductor

Field-Effect

Transistor)

Oxide-

FET)

FET Biasing

Self-Bias (JFET): Achieved by using a resistor between the source and ground. The drain current creates a voltage drop across the resistor, which biases the gate-source junction.

V_GS = -I_D * R_S

Voltage Divider Bias (MOSFET): Similar to BJT voltage divider bias. Sets the gate voltage using a voltage divider network.

V_G = V_DD * (R_2 / (R_1 + R_2))

FET Applications

Amplifiers	FETs are used as amplifiers in various circuits due to their high input impedance.
Switches	MOSFETs are commonly used as electronic switches due to their low ON-resistance and high OFF- resistance.
Current Sources	FETs can be configured as constant current sources.

Advanced Transistor Concepts

Transistor Packages

N-channel vs. P-

channel

Transistors come in various packages, including:

- TO-92: Common through-hole package for small signal transistors.
- **TO-220**: Larger package for power transistors.
- SMD (Surface Mount Devices): For highdensity PCB designs (e.g., SOT-23, SOT-223).

Thermal Considerations

Transistors generate heat when conducting current. It's essential to consider thermal management to prevent overheating and damage.

- Heat Sinks: Used to dissipate heat from power transistors.
- **Thermal Resistance**: Parameter that indicates how effectively a component dissipates heat.

SPICE Modeling

SPICE (Simulation Program with Integrated Circuit Emphasis) is a powerful tool for simulating electronic circuits, including transistor circuits. Transistor models are used to accurately represent the behavior of transistors in simulations.

.MODEL Q2N2222 NPN (BF=200 IS=1E-14 VAF=100)