
Erlang Cheatsheet
A quick reference guide to the Erlang programming language, covering syntax, data types, concurrency, and OTP principles.

Erlang Basics

Concurrency

Syntax Fundamentals

Variable

Assignment

Erlang uses single assignment. Variables start with an

uppercase letter.

X = 10.

Atoms Atoms are literal constants, starting with a lowercase

letter.

status = ok.

Comments Single-line comments start with % .

% This is a comment

Tuples Tuples are compound data types.

Point = {10, 20}.

Lists Lists are dynamic arrays.

Numbers = [1, 2, 3].

Strings Strings are lists of character codes.

Name = "Erlang".

Basic Operators

Arithmetic + , - , * , / , div , rem

Comparison == , /= , < , > , =< , =>

Boolean and , or , xor , not

List Operators ++ , -- (append and subtract lists)

Processes

Spawning Processes Use spawn to create a new process.

spawn(Module, Function, Args).

Sending Messages Use ! to send messages to a process.

ReceiverPid ! {self(), Message}.

Receiving Messages Use receive to handle incoming messages.

receive

 {Sender, Message} ->

 io:format("Received ~p from ~p~n",

[Message, Sender])

end.

Process Identifiers

(PIDs)

Returned by spawn , used to identify processes.

Message Handling

Messages are the primary means of communication between Erlang

processes. They are asynchronous and can be any Erlang term.

The receive block selectively receives messages based on pattern

matching. Messages that don’t match remain in the mailbox.

Use after to specify a timeout for the receive block.

receive

 Message ->

 ...

after 5000 ->

 io:format("Timeout~n")

end.

Page 1 of 2 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/350-erlang-cheatsheet
http://cheatsheetshero.com/user/all/350-erlang-cheatsheet
http://cheatsheetshero.com/user/all/350-erlang-cheatsheet
https://cheatsheetshero.com/

OTP Principles

Common Built-in Functions (BIFs)

Supervisors

Supervisors are processes that monitor and

restart other processes (children) in case of

failure. They ensure the system’s fault tolerance.

Common supervision strategies include

one_for_one , rest_for_one , and

one_for_all .

Example:

{simple_one_for_one, {local,

my_supervisor},

 [{my_worker, {my_worker, start_link,

[]}, permanent, brutal_kill, worker,

[my_worker]}]}.

Behaviours

gen_serv

er

Generic server behaviour for stateful

processes.

gen_stat

em

Generic state machine behaviour.

gen_even

t

Generic event handler behaviour.

supervis

or

Behaviour for creating supervisor

processes.

Applications

Applications are a collection of modules,

processes, and other resources that form a

reusable component. They provide a way to

package and manage Erlang code.

An application resource file (.app) defines the

application’s metadata, such as its name,

description, and dependencies.

Process Related

self() Returns the PID of the current

process.

spawn(Module,

Function,

Args)

Spawns a new process.

exit(Reason) Terminates the current

process with the given

reason.

erlang:monito

r(process,

Pid)

Sets up a monitor for the

specified process.

Data Type Conversion

list_to_atom(List) Converts a list to an

atom.

atom_to_list(Atom) Converts an atom to a

list.

list_to_integer(Lis

t)

Converts a list to an

integer.

integer_to_list(Int

eger)

Converts an integer to

a list.

I/O

io:format(Format,

Args)

Prints formatted

output.

file:read_file(File

name)

Reads the contents of

a file.

Page 2 of 2 https://cheatsheetshero.com

https://cheatsheetshero.com/

