
Microservices Architecture Cheatsheet
A concise reference guide to microservices architecture, covering key concepts, design principles, communication patterns, deployment strategies,

and related technologies. This cheatsheet provides a quick overview for architects, developers, and DevOps engineers working with microservices.

Core Concepts

Communication Patterns

Deployment & Infrastructure

Definition

Microservices: An architectural style that

structures an application as a collection of small,

autonomous services, modeled around a business

domain.

Each service is self-contained and implements a

single business capability.

Services communicate through well-defined

APIs, often over a network.

Key Principles

Single

Responsibility

Principle (SRP)

Each service should have

one reason to change; focus

on a single business

capability.

Autonomy Services should be

independently deployable,

scalable, and replaceable.

Decentralized

Governance

Services can choose their

own technology stack, data

store, and deployment

strategy.

Fault Isolation Failure of one service should

not cascade to other

services. Implement circuit

breakers and bulkheads.

API-First Design Design services with well-

defined, versioned APIs that

are easy to consume.

Benefits

Improved Scalability: Scale individual

services based on their specific needs.

Increased Agility: Faster development and

deployment cycles.

Technology Diversity: Choose the right

technology for each service.

Fault Isolation: Isolate failures and prevent

cascading issues.

Easier Understanding: Smaller codebases are

easier to understand and maintain.

Synchronous Communication

REST

(Representational

State Transfer)

A widely used

architectural style for

building web services.

Uses standard HTTP

methods (GET, POST,

PUT, DELETE).

gRPC (gRPC

Remote Procedure

Calls)

A high-performance,

open-source RPC

framework developed by

Google. Uses Protocol

Buffers for serialization.

GraphQL A query language for your

API and a server-side

runtime for executing

those queries. Clients

request only the data they

need.

Asynchronous Communication

Message

Queues (e.g.,

RabbitMQ,

Kafka)

Enable asynchronous

communication between

services. Messages are placed

in a queue and consumed by

other services.

Event-Driven

Architecture

Services publish events when

something significant

happens. Other services

subscribe to these events and

react accordingly.

Message

Brokers

Centralized hub that routes

messages between

microservices, enabling

decoupling and scalability.

API Gateway

Acts as a single entry point for all client requests.

Handles routing, authentication, authorization,

and rate limiting.

Example: Kong, Tyk, Apigee

Benefits:

Decouples clients from the underlying

microservice architecture.

Provides a unified interface for clients.

Enables cross-cutting concerns such as

security and monitoring.

Containerization

Containers (e.g., Docker) provide a lightweight

and portable way to package and deploy

microservices.

Containers encapsulate the service and its

dependencies, ensuring consistency across

different environments.

Orchestration

Kubernetes A popular open-source container

orchestration platform.

Automates deployment, scaling,

and management of

containerized applications.

Docker

Swarm

Docker’s native container

orchestration tool. Simpler to set

up than Kubernetes but less

feature-rich.

Serverless

Computing

Deploy microservices as

functions that are triggered by

events. (e.g., AWS Lambda, Azure

Functions).

Service Discovery

Services need a way to discover the location of

other services. Service discovery mechanisms

provide a dynamic registry of service instances.

Examples:

Consul

Etcd

ZooKeeper

Page 1 of 2 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/411-microservices-architecture-cheatsheet
http://cheatsheetshero.com/user/all/411-microservices-architecture-cheatsheet
http://cheatsheetshero.com/user/all/411-microservices-architecture-cheatsheet
https://cheatsheetshero.com/


Design Considerations

Monitoring & Logging

Centralized

Logging

Aggregate logs from all services

into a central location for

analysis. (e.g., ELK stack, Splunk).

Metrics

Collection

Collect metrics about service

performance and health. (e.g.,

Prometheus, Grafana).

Distributed

Tracing

Track requests as they flow

through multiple services. (e.g.,

Jaeger, Zipkin).

Domain-Driven Design (DDD)

DDD is an approach to software development

that focuses on modeling the domain. Align

microservices with bounded contexts in your

domain model.

Use DDD concepts like entities, value objects,

and aggregates to design cohesive and loosely

coupled services.

Data Management

Database per

Service

Each service should own its

own database. This ensures

data autonomy and prevents

tight coupling.

Shared

Database (Anti-

Pattern)

Avoid sharing databases

between services. This can

lead to tight coupling and

contention.

Eventual

Consistency

Data consistency across

services is often eventual. Use

techniques like sagas to

manage transactions across

services.

Security

Implement authentication and authorization for

all services. Use standards like OAuth 2.0 and

OpenID Connect.

Secure communication between services using

TLS. Consider using a service mesh like Istio for

managing security policies.

Testing

Unit Tests Test individual components of

a service.

Integration

Tests

Test interactions between

services.

End-to-End

Tests

Test the entire system from

end to end.

Page 2 of 2 https://cheatsheetshero.com

https://cheatsheetshero.com/

