
XML Formatting Cheatsheet
A comprehensive guide to XML formatting, covering syntax, best practices, and common formatting techniques for creating readable and

maintainable XML documents.

XML Structure and Syntax

Formatting Best Practices

Handling Special Characters and CDATA

Basic XML Structure

XML documents must have a root element that

contains all other elements.

Example:

<root>

 <element>Content</element>

</root>

XML elements consist of a start tag, content, and

an end tag.

Example:

<element>Content</element>

Elements can have attributes that provide

additional information.

Example:

<element

attribute="value">Content</element>

XML Declaration

The XML declaration is

optional but recommended.

It specifies the XML version

and encoding.

<?xml

version="1.0"

encoding="UTF

-8"?>

Version attribute Specifies the XML

version being

used (usually 1.0).

Encoding attribute Specifies the

character

encoding (e.g.,

UTF-8, ISO-8859-

1).

Comments

Comments are used to include explanatory notes

in the XML document.

Example:

<!-- This is a comment -->

Comments can span multiple lines.

Example:

<!--

 This is a multi-line

 comment.

-->

Indentation

Use consistent indentation to improve readability.

Common indentation is 2 or 4 spaces.

Example:

<root>

 <element>

 <subelement>Content</subelement>

 </element>

</root>

Avoid using tabs for indentation, as they may be

displayed differently in different editors.

Line Breaks

Add line breaks after each start and

end tag to enhance readability,

especially for complex structures.

<root>

<elemen

t>

Content

</eleme

nt>

</root>

For elements with only text

content, a single line is acceptable.
<elemen

t>Conte

nt</ele

ment>

Attribute Formatting

Place each attribute on a new line if there are

multiple attributes to improve readability.

Example:

<element

 attribute1="value1"

 attribute2="value2">

 Content

</element>

Ensure attribute values are properly quoted

(using either single or double quotes).

Escaping Special Characters

Special characters in XML must be escaped using

predefined entities.

Example:

< (less than) becomes <

> (greater than) becomes >

& (ampersand) becomes &

' (apostrophe) becomes '

" (double quote) becomes "

Use these entities within element content and

attribute values to avoid parsing errors.

Page 1 of 2 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/464-xml-formatting-cheatsheet
http://cheatsheetshero.com/user/all/464-xml-formatting-cheatsheet
http://cheatsheetshero.com/user/all/464-xml-formatting-cheatsheet
https://cheatsheetshero.com/

Advanced Formatting Techniques

CDATA Sections

CDATA sections are used

to include blocks of text

that contain special

characters without

escaping them.

<![CDATA[

<element>Content

with < and >

characters</elem

ent>

]]>

CDATA sections start

with <![CDATA[and end

with]]> .

Within a CDATA

section, only]]> is

recognized as a

special sequence.

Whitespace Handling

XML processors preserve whitespace by default.

Significant whitespace should be handled

carefully.

Example:

<root>

 <element> Content </element>

</root>

Use the xml:space attribute to control

whitespace handling if needed. The value can be

default or preserve .

Example:

<element xml:space="preserve"> Content

</element>

Using XML Schema for Validation

XML Schema Definition (XSD) can be used to

validate the structure and content of XML

documents.

Example:

<root

xmlns:xsi="http://www.w3.org/2001/XMLSch

ema-instance"

 xsi:schemaLocation="namespace

schema.xsd">

 ...

</root>

Validating XML against a schema ensures

consistency and correctness.

Pretty Printing

Pretty printing involves

automatically formatting

XML with indentation and

line breaks for better

readability.

Many XML editors

and libraries provide

pretty printing

functionality.

Tools like xmllint can

be used for command-line

pretty printing.

xmllint --

format --indent

4 input.xml

Namespace Management

XML namespaces provide a way to avoid naming

conflicts between elements and attributes from

different sources.

Example:

<root

xmlns:prefix="http://example.com/namespa

ce">

<prefix:element>Content</prefix:element>

</root>

Use namespaces to organize and differentiate

elements in complex XML documents.

Page 2 of 2 https://cheatsheetshero.com

https://cheatsheetshero.com/

