
Advanced Regular Expressions Cheat Sheet
A concise guide to advanced regular expression patterns and techniques, including lookarounds, backreferences, and conditional matching, designed

to help you master complex text manipulation.

Lookarounds

Positive Lookahead

(?:patt

ern)

Matches a group without capturing

it. Useful when you need to group

parts of a regex but don’t need to

refer back to them.

Example:

Matches a URL but doesn’t capture

the protocol.

(?:https?|ftp)://.*

(?

=pattern

)

Asserts that the regex matches the

pattern that follows, but doesn’t

include the pattern in the match.

Example:

Matches a word followed by ’ Inc.’,

without including ’ Inc.’ in the

matched text.

\w+(?=\sInc\.)

X(?=Y) Find “X” only if followed by “Y”.

Example

Matches ‘foo’ only if it’s followed by

‘bar’, but ‘bar’ is not part of the

match.

foo(?=bar)

Use cases Validating password strength,

parsing structured data, and

conditional replacements.

Real-

world

example

Extract the version number from

‘app-1.2.3.zip’ using app-(?=\d+

(?:\.\d+)*\.zip) . This will only

match ‘app-’ if it’s followed by a

version number pattern and ‘.zip’.

Negative Lookahead

X(?!Y) Find “X” only if not followed by “Y”.

Example

Matches ‘foo’ only if it’s NOT

followed by ‘bar’.

foo(?!bar)

(?

<!pattern

)

Asserts that the regex matches if

the pattern does not precede the

current position. The pattern is

not included in the match.

Example:

Matches ‘%word’ only if it is not

preceded by a digit.

(?<!\d)%\w+

Use cases Filtering log files, validating data

formats, and advanced search

functionalities.

Real-

world

example

Find all words that are not preceded

by a number using (?

<!\d)\b\w+\b . This helps to

exclude words that are part of a

numbered list.

(?

<!pattern

)X

Asserts that the regex matches if

the pattern does not precede the

current position. The pattern is

not included in the match.

Example:

Matches a one or more digits if not

preceded by a capital letter

(?<![A-Z])\d+

Positive Lookbehind

(?

<=pattern

)

Asserts that the regex matches the

pattern that precedes, but

doesn’t include the pattern in the

match.

Example:

Matches a number preceded by

‘USD’, without including ‘USD’ in the

matched number.

(?<=USD)\d+\.?\d*

(?<=X)Y Find “Y” only if preceded by “X”.

Example

Matches ‘foo’ only if it’s preceded by

‘bar’, but ‘bar’ is not part of the

match.

(?<=bar)foo

Use cases Extracting data from specific

contexts, validating formatted input,

and data sanitization.

Real-

world

example

Extract file sizes (numbers) only

when they are indicated in kilobytes

(KB) using (?<=KB)\d+ . This

targets only the file sizes specified

in KB.

Note Not supported in all regex engines.

Negative Lookbehind

(?

<!pattern

)X

Asserts that the regex matches if

the pattern does not precede the

current position. The pattern is

not included in the match.

Example:

Matches ‘%word’ only if it is not

preceded by a digit.

(?<!\d)%\w+

(?<!X)Y Find “Y” only if not preceded by “X”.

Example

Matches ‘foo’ only if it’s NOT

preceded by ‘bar’.

(?<!bar)foo

Use cases Filtering data based on context,

excluding unwanted patterns, and

refining search results.

Real-world

example

Find function names that are not

part of a class method definition

using (?<!\.)\b\w+\b . This helps

to identify standalone functions.

Note Not supported in all regex engines.

Page 1 of 3 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/480-advanced-regular-expressions-cheat-sheet
http://cheatsheetshero.com/user/all/480-advanced-regular-expressions-cheat-sheet
http://cheatsheetshero.com/user/all/480-advanced-regular-expressions-cheat-sheet
https://cheatsheetshero.com/

Backreferences

Conditional Matching

Basic Backreference

\1 , \2 ,

etc.

Refers to the text matched by the

1st, 2nd, etc. capturing group.

Example:

Matches a repeated word, like ‘the

the’.

(\w+)\s\1

Use cases Finding duplicate words, validating

symmetrical patterns, and complex

text replacements.

Example Find duplicated words in a text:

(\b\w+)\s+\1 . This will match

‘word word’ and is case-sensitive.

Common

mistake

Forgetting that backreferences

refer to the exact matched text, not

the pattern.

Real-world

example

Correct HTML tag pairing using

<(.*?)>.*?</\1> . This ensures

that the closing tag matches the

opening tag (e.g., <h1>...</h1>).

Note Backreferences can significantly

increase the complexity (and

processing time) of regex matching.

Named Capture Groups

(?

<name>pattern)

(PCRE/Python)

Defines a named capture

group.

Example:

Matches a date and names

the groups ‘year’, ‘month’,

and ‘day’.

(?<year>\d{4})-(?

<month>\d{2})-(?

<day>\d{2})

(?'name'patter

n) (.NET)

Alternative syntax for

defining named capture

groups in .NET.

\k<name>

(PCRE/Python)

Refers to a named capture

group.

Example:

Matches repeated words

using the named group

‘word’.

(?<word>\w+)\s+\k<word>

Use cases Parsing complex data

structures, extracting

specific parts of a string, and

making regexes more

readable.

Real-world

example

Extract specific parts of a log

entry like timestamp, log

level, and message using

named groups for better

clarity and maintainability.

Note Named groups improve

readability but might not be

supported in all regex

engines.

Backreference in Replacement

$1 , $2 ,

etc. (Most

engines)

Refers to captured groups in the

replacement string.

Example:

Swaps the first and last word

separated by a comma and space.

Find: (\w+),(\s)(\w+)

Replace: $3,$2$1

\1 , \2 ,

etc. (Some

engines)

Alternative syntax for

backreferences in replacement

strings, especially in languages like

Python.

Use cases Reformatting data, swapping fields,

and complex string manipulations.

Example Reformat phone numbers from

‘123-456-7890’ to ‘(123) 456-7890’

using (\d{3})-(\d{3})-(\d{4})

as the find pattern and ($1)

$2-$3 as the replace pattern.

Note Ensure that the backreference

number matches the intended

capture group to avoid unexpected

results.

Real-world

example

Swap first name and last name in a

CSV file, where names are

separated by a comma, using

backreferences in the replacement

string.

If-Then-Else Conditionals

?(?

(condition)then

|else)

Matches either the then pattern if the condition is

true, or the else pattern if the condition is false.

Condition syntax (?(1)then|else) - Condition based on whether group 1

matched.

Example

Matches email addresses, optionally enclosed in angle

brackets.

(<)?(\w+@\w+(?:\.\w+)+)(?(1)>)

Use cases Handling optional elements, validating complex data

formats, and adapting matching based on context.

Real-world

example

Parse data entries where some fields are optional but

depend on the presence of others, such as address fields

in a contact database.

Note Not supported in all regex engines, and syntax may vary.

If-Then Conditionals

?(?

(condition)th

en)

Matches the then pattern only if the condition is

true.

Condition

syntax

(?(name)then) - Condition based on whether named

group ‘name’ matched.

Example

Matches a number, optionally enclosed in parentheses,

but only if both parentheses are present.

(\()?\d+(?(1)\))

Use cases Validating paired elements, handling different formats,

and ensuring data consistency.

Real-world

example

Process log entries that may or may not include a

timestamp, but require specific handling if the timestamp

is present.

Note Like If-Then-Else, If-Then conditionals have limited

support across regex engines.

Page 2 of 3 https://cheatsheetshero.com

https://cheatsheetshero.com/

Recursion

Recursive Patterns

(?R) or (?0) Recurses the entire regular expression.

Example:

Matches nested parentheses.

\(([^()]|(?R))*\)

(?n) Recurses the nth subpattern.

Use cases Matching nested structures, parsing markup languages, and validating complex syntax.

Note Recursion is powerful but can lead to performance issues or stack overflow errors with deeply nested structures. Not supported in all

regex engines.

Example Match nested HTML tags like <div><div>...</div></div> using recursion to ensure proper nesting.

Real-world

example

Parse nested JSON or XML structures, ensuring that all opening tags have corresponding closing tags.

Page 3 of 3 https://cheatsheetshero.com

https://cheatsheetshero.com/

