CHEAT
SHEETS

Regex Fundamentals

Basic Patterns

Regular Expressions Cheat Sheet

A concise reference for regular expressions (regex) syntax and usage, covering patterns, metacharacters, quantifiers, and common operations.

Metacharacters

Anchors

abc Matches the literal sequence abc .

[abc Matches any single character: a , b,

] or c .

[rabc Matches any single character except
1 a, b,or c.

[a- Matches any lowercase letter from a
z] to z .

[0- Matches any digit from 0 to 9 .
9]

Matches any single character (except
newline).

Quantifiers and Grouping

\ Matches any digit (same as [0-9]).
d

\ Matches any non-digit character (same as
D [70-9]).

\ Matches any word character (alphanumeric
w and underscore, same as [a-zA-Z0-9_]).

\ Matches any non-word character (same as
w [ra-zA-Z0-9_]).

\ Matches any whitespace character (space,
s tab, newline).

\ Matches any non-whitespace character.

A Matches the beginning of the string.
$ Matches the end of the string.

\ Matches a word boundary (the position
b between a word character and a non-word
character).

\ Matches a non-word boundary.

Quantifiers Grouping and Capturing Greedy vs. Lazy Matching

* Matches the preceding element O or () Groups the enclosed pattern. By default, quantifiers are greedy, meaning they

more times. Captures the matched text for match as much as possible.
. backreferencing.

* Match‘es the preceding element 1 or 5 ‘ Add a ? after a quantifier to make it lazy,
more times. (?:pattern) Non-captg:ng group. C.Brour:s the matching as little as possible.

? Matches the preceding element O or 1 pattern without capturing the
time matched text. Example:

{n} Matches the preceding element exactly n
times.

{n, Matches the preceding element n or
3} more times.

{n,m Matches the preceding element between
} n and m times (inclusive).

Advanced Regex Features

Lookarounds

Acts as an ‘or’ operator. Matches
either the pattern before or after

the | .
(? Named capturing group. Matches
<name>... and stores it in the group
) named name .
\1), \2), Backreferences to the captured

groups. \1 refers to the first
captured group, \2 tothe
second, and so on.

Flags/Modifiers

(? Positive lookahead assertion. Ensures that
=pat the patternis followed by pattern , but
tern doesn'tinclude pattern inthe match.

?1p Negative lookahead assertion. Ensures
atte that the patternis not followed by
rn pattern .

(? Positive lookbehind assertion. Ensures

<=pa that the pattern is preceded by

tter pattern , but doesn'tinclude pattern

n) in the match (not supported in all regex
engines).

(? Negative lookbehind assertion. Ensures
<ipa thatthe patternis not preceded by
tter pattern (not supported in all regex
n) engines).

Page 1 of 2

i Case-insensitive matching.

g Global matching (find all matches, not just
the first).

m Multiline matching. A~ and $ match the
start and end of each line (as well as the
start/end of the string).

s Dotall. Allows to match newline

characters.

Conditional Regex

(?(condition)then|else) - Matches the
then partif the condition is met, otherwise
matches the else part. The else partcanbe
omitted.

Given the string <a> and the
pattern <.*> :
« Greedy: matches <a>

e Lazy: matches <a>

https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/531-regular-expressions-cheat-sheet
http://cheatsheetshero.com/user/all/531-regular-expressions-cheat-sheet
http://cheatsheetshero.com/user/all/531-regular-expressions-cheat-sheet
https://cheatsheetshero.com/

Common Regex Operations

Substitution

Splitting

Validation

Replace matches of a pattern with a specified
string.

Example (Python):

import re

text = "The quick brown fox"
new_text = re.sub(r"\s+", "-", text)
print(new_text) # Output: The-quick-

brown-fox

Page 2 of 2

Split a string into a list of substrings based on a
regex delimiter.

Example (JavaScript):

const text = "apple,banana,orange";
const fruits = text.split(/,/);
console.log(fruits); // Output: [

'apple', 'banana', 'orange']

Verify that a string matches a specific format
using regex.

Example (Java):

import java.util.regex.Pattern;

String email = "test@example.com";
boolean isvalid = Pattern.matches("[a-
ZA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\\.[a-zA-Z]
{2,}", email);
System.out.println(isvalid); // Output:

true

https://cheatsheetshero.com

https://cheatsheetshero.com/

