
Regular Expressions Cheat Sheet
A concise reference for regular expressions (regex) syntax and usage, covering patterns, metacharacters, quantifiers, and common operations.

Regex Fundamentals

Quantifiers and Grouping

Advanced Regex Features

Basic Patterns

abc Matches the literal sequence abc .

[abc

]

Matches any single character: a , b ,

or c .

[^abc

]

Matches any single character except

a , b , or c .

[a-

z]

Matches any lowercase letter from a

to z .

[0-

9]

Matches any digit from 0  to 9 .

. Matches any single character (except

newline).

Metacharacters

\

d

Matches any digit (same as [0-9] ).

\

D

Matches any non-digit character (same as

[^0-9] ).

\

w

Matches any word character (alphanumeric

and underscore, same as [a-zA-Z0-9_] ).

\

W

Matches any non-word character (same as

[^a-zA-Z0-9_] ).

\

s

Matches any whitespace character (space,

tab, newline).

\

S

Matches any non-whitespace character.

Anchors

^ Matches the beginning of the string.

$ Matches the end of the string.

\

b

Matches a word boundary (the position

between a word character and a non-word

character).

\

B

Matches a non-word boundary.

Quantifiers

* Matches the preceding element 0 or

more times.

+ Matches the preceding element 1 or

more times.

? Matches the preceding element 0 or 1

time.

{n} Matches the preceding element exactly n

times.

{n,

}

Matches the preceding element n or

more times.

{n,m

}

Matches the preceding element between

n and m times (inclusive).

Grouping and Capturing

() Groups the enclosed pattern.

Captures the matched text for

backreferencing.

(?:pattern) Non-capturing group. Groups the

pattern without capturing the

matched text.

| Acts as an ‘or’ operator. Matches

either the pattern before or after

the | .

(?

<name>...

)

Named capturing group. Matches

...  and stores it in the group

named name .

\1 , \2 ,

…

Backreferences to the captured

groups. \1  refers to the first

captured group, \2  to the

second, and so on.

Greedy vs. Lazy Matching

By default, quantifiers are greedy, meaning they

match as much as possible.

Add a ?  after a quantifier to make it lazy,

matching as little as possible.

Example:

Given the string <a><b></a></b>  and the

pattern <.*> :

Greedy: matches <a><b></a></b>

Lazy: matches <a>

Lookarounds

(?

=pat

tern

)

Positive lookahead assertion. Ensures that

the pattern is followed by pattern , but

doesn’t include pattern  in the match.

?!p

atte

rn

Negative lookahead assertion. Ensures

that the pattern is not followed by

pattern .

(?

<=pa

tter

n)

Positive lookbehind assertion. Ensures

that the pattern is preceded by

pattern , but doesn’t include pattern

in the match (not supported in all regex

engines).

(?

<!pa

tter

n)

Negative lookbehind assertion. Ensures

that the pattern is not preceded by

pattern  (not supported in all regex

engines).

Flags/Modifiers

i Case-insensitive matching.

g Global matching (find all matches, not just

the first).

m Multiline matching. ^  and $  match the

start and end of each line (as well as the

start/end of the string).

s Dotall. Allows .  to match newline

characters.

Conditional Regex

(?(condition)then|else)  - Matches the

then  part if the condition  is met, otherwise

matches the else  part. The else  part can be

omitted.

Page 1 of 2 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/531-regular-expressions-cheat-sheet
http://cheatsheetshero.com/user/all/531-regular-expressions-cheat-sheet
http://cheatsheetshero.com/user/all/531-regular-expressions-cheat-sheet
https://cheatsheetshero.com/


Common Regex Operations

Substitution

Replace matches of a pattern with a specified

string.

Example (Python):

import re

text = "The quick brown fox"

new_text = re.sub(r"\s+", "-", text)

print(new_text) # Output: The-quick-

brown-fox

Splitting

Split a string into a list of substrings based on a

regex delimiter.

Example (JavaScript):

const text = "apple,banana,orange";

const fruits = text.split(/,/);

console.log(fruits); // Output: [ 

'apple', 'banana', 'orange' ]

Validation

Verify that a string matches a specific format

using regex.

Example (Java):

import java.util.regex.Pattern;

String email = "test@example.com";

boolean isValid = Pattern.matches("[a-

zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\\.[a-zA-Z]

{2,}", email);

System.out.println(isValid); // Output: 

true

Page 2 of 2 https://cheatsheetshero.com

https://cheatsheetshero.com/

