
Karma Testing Cheatsheet
A comprehensive cheat sheet for Karma, the test runner for JavaScript. This guide covers configuration, common commands, debugging techniques,

and best practices to streamline your testing workflow.

Karma Configuration

Running Karma Tests

Debugging Karma Tests

Basic Configuration File (karma.conf.js)

The karma.conf.js file configures Karma’s

behavior. It specifies the files to be included in

the test environment, testing framework,

browsers to launch, and reporters to use.

module.exports = function(config) {

 config.set({

 frameworks: ['jasmine'],

 files: [

 'src/**/*.js',

 'test/**/*.spec.js'

],

 reporters: ['progress'],

 port: 9876,

 colors: true,

 logLevel: config.LOG_INFO,

 browsers: ['Chrome'],

 autoWatch: true,

 singleRun: false

 });

};

Key Configuration Options

fram

ework

s

An array of testing frameworks to use

(e.g., ‘jasmine’, ‘mocha’, ‘qunit’).

file

s

An array of file patterns to load. Order

matters; dependencies should be listed

first.

excl

ude

An array of file patterns to exclude from

loading.

repo

rter

s

An array of reporters to use (e.g.,

‘progress’, ‘dots’, ‘coverage’).

por

t

The port Karma will listen on.

brow

sers

An array of browsers to launch for

testing (e.g., ‘Chrome’, ‘Firefox’, ‘Safari’).

auto

Watc

h

If true, Karma will watch files for

changes and rerun tests automatically.

sing

leRu

n

If true, Karma will run tests once and

exit.

Preprocessors

Preprocessors apply transformations to files

before they are served to the browser. Common

use cases include transpiling code (e.g., Babel for

ES6) and generating coverage reports.

preprocessors: {

 'src/**/*.js': ['babel', 'coverage']

},

Basic Commands

karm

a

star

t

Starts the Karma test runner using the

configuration file (karma.conf.js).

karm

a

run

Triggers a test run without restarting the

Karma server. Requires the server to be

already running.

karm

a

init

Helps create a karma.conf.js file in the

current directory.

Command-Line Options

You can override configuration options from the

command line using -- . For example, to run

tests in Firefox, use karma start --browsers

Firefox .

--single-run : Override the singleRun setting

in the config file

--browsers : Override the browsers setting in

the config file

--port : Override the port setting in the config

file

Example Commands

Run tests in Chrome once and exit:

karma start --single-run --browsers

Chrome

Run tests and keep watching for changes:

karma start

Debugging Techniques

Karma provides several ways to debug your tests,

including using browser developer tools and the

browserConsoleLog configuration option.

Using Browser Developer Tools

1. Open the

browser’s

developer

tools

Launch your tests using

Karma, then open the

developer tools in the

browser (e.g., Chrome

DevTools, Firefox

Developer Tools).

2. Set

breakpoints

Insert debugger;

statements in your code or

set breakpoints in the

developer tools.

3. Inspect

variables

Use the console or

debugger to inspect

variables and step through

your code.

browserConsoleLog

The browserConsoleLog configuration option

allows you to log messages from the browser

console to the Karma console.

config.set({

 browserConsoleLogOptions: {

 level: 'debug',

 format: '%b %T: %m',

 terminal: true

 }

});

Page 1 of 2 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/550-karma-testing-cheatsheet
http://cheatsheetshero.com/user/all/550-karma-testing-cheatsheet
http://cheatsheetshero.com/user/all/550-karma-testing-cheatsheet
https://cheatsheetshero.com/

Advanced Karma Features

Custom Launchers

You can configure custom browser launchers to

run tests in specific environments, such as

headless Chrome or custom browser

configurations.

customLaunchers: {

 ChromeHeadlessCI: {

 base: 'ChromeHeadless',

 flags: ['--no-sandbox']

 }

},

browsers: ['ChromeHeadlessCI']

Plugins

Karma supports a wide range of plugins to extend

its functionality, including reporters,

preprocessors, and frameworks. Install plugins

using npm and configure them in your

karma.conf.js file.

Reporters

progre

ss

Displays a progress bar and test results

in the console.

dots Displays test results using dots in the

console.

covera

ge

Generates code coverage reports.

junit Generates JUnit-style XML reports.

Page 2 of 2 https://cheatsheetshero.com

https://cheatsheetshero.com/

