
Software Architecture: Tools & Concepts
A comprehensive cheat sheet outlining essential tools, concepts, and best practices in software architecture. This guide covers various architectural

patterns, design principles, and related technologies to help architects and developers build robust and scalable systems.

Architectural Patterns

Design Principles

Tools and Technologies

Communication & Messaging

Monolithic Architecture

Description: Traditional architecture where all

components are tightly coupled and deployed as

a single unit.

Pros: Simple to develop, deploy, and test initially.

Cons: Difficult to scale, maintain, and update.

Changes in one part can affect the entire

application.

Use Cases: Small to medium-sized applications

with limited complexity and low scalability

requirements.

Microservices Architecture

Description: An architectural style that structures

an application as a collection of small,

autonomous services, modeled around a business

domain.

Pros: Improved scalability, independent

deployment, technology diversity, fault isolation.

Cons: Increased complexity, distributed

debugging, eventual consistency challenges.

Use Cases: Complex, large-scale applications

with high scalability and availability requirements.

Organizations with multiple development teams.

Layered Architecture

Description: Organizes the application into

distinct layers (e.g., presentation, business logic,

data access), each performing a specific role.

Pros: Separation of concerns, easy to understand,

test, and modify.

Cons: Can lead to tight coupling between layers,

performance overhead if not designed properly.

Use Cases: Applications where a clear separation

of concerns is needed, such as enterprise

applications and web applications.

SOLID Principles

S - Single Responsibility Principle: A class should

have only one reason to change.

O - Open/Closed Principle: Software entities

should be open for extension but closed for

modification.

L - Liskov Substitution Principle: Subtypes must

be substitutable for their base types.

I - Interface Segregation Principle: Clients should

not be forced to depend on methods they do not

use.

D - Dependency Inversion Principle: Depend

upon Abstractions. Do not depend upon

concretions.

Benefits: Improved code maintainability,

reusability, and testability. Reduced coupling and

increased cohesion.

DRY Principle

Description: Don’t Repeat Yourself. Avoid

duplication of code and logic by using

abstraction and reuse.

Benefits: Reduced code size, easier maintenance,

lower risk of errors.

Example: Use functions, classes, or modules to

encapsulate reusable logic instead of copy-

pasting code.

KISS Principle

Description: Keep It Simple, Stupid. Design

systems to be as simple as possible, avoiding

unnecessary complexity.

Benefits: Easier to understand, maintain, and

debug. Reduces the risk of introducing bugs.

Example: Prefer straightforward solutions over

overly complex ones, even if they seem less

elegant initially.

Containerization (Docker)

Description: Packages software and its

dependencies into isolated containers for

consistent execution across different

environments.

Benefits: Improved portability, scalability, and

resource utilization. Simplifies deployment and

management.

Key Commands: docker build , docker run ,

docker-compose up

Orchestration (Kubernetes)

Description: Automates the deployment, scaling,

and management of containerized applications.

Benefits: High availability, fault tolerance, and

automated scaling. Simplifies complex

deployments.

Key Concepts: Pods, Services, Deployments,

Namespaces

API Gateways

Description: Manages and routes API requests,

providing security, rate limiting, and other

essential features.

Benefits: Improved security, traffic management,

and API discoverability. Decouples clients from

backend services.

Examples: Kong, Apigee, Tyk

Message Queues

Description: Facilitate asynchronous

communication between services by storing

messages in a queue until they are processed.

Benefits: Decoupling, scalability, and fault

tolerance. Enables reliable communication

between services.

Examples: RabbitMQ, Kafka, ActiveMQ

gRPC

Description: A high-performance, open-source

universal RPC framework.

Benefits: Efficient communication, strong typing,

and language interoperability. Suitable for

microservices architectures.

Key Features: Protocol Buffers, HTTP/2,

Streaming

RESTful APIs

Description: An architectural style for designing

networked applications based on standard HTTP

methods and resources.

Benefits: Simple, widely adopted, and easy to

understand. Supports caching and scalability.

Key Concepts: Resources, HTTP methods (GET,

POST, PUT, DELETE), Status Codes

Page 1 of 1 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/578-software-architecture-tools-concepts-cheatsheet
http://cheatsheetshero.com/user/all/578-software-architecture-tools-concepts-cheatsheet
http://cheatsheetshero.com/user/all/578-software-architecture-tools-concepts-cheatsheet
https://cheatsheetshero.com/

