
GraphQL API Cheatsheet
A comprehensive cheatsheet covering GraphQL syntax, queries, mutations, schema definition, and best practices for designing and implementing

GraphQL APIs.

GraphQL Basics

GraphQL Schema Definition Language (SDL)

Core Concepts

GraphQL: A query language for your API and a server-side runtime for

executing queries by using a type system you define for your data.

Schema: The backbone of any GraphQL API. It defines the structure of the

data, including the types, fields, and relationships.

Query: Used to request data from the GraphQL API. Queries specify exactly

what data the client needs, and nothing more.

Mutation: Used to modify data on the server. Mutations can create, update,

or delete data.

Resolver: A function attached to a field in the GraphQL schema. It fetches

the data for that field.

GraphQL vs REST

GraphQL REST

Single endpoint. Multiple endpoints.

Client specifies the data required. Server defines the data returned.

Strongly typed schema. Loosely defined data structures.

Efficient data fetching (no over-fetching

or under-fetching).

Potential for over-fetching and

under-fetching.

Defining Types

Use SDL to define the structure and types of your

data.

type User {

 id: ID!

 name: String!

 email: String

 posts: [Post!]

}

type Post {

 id: ID!

 title: String!

 content: String

 author: User!

}

Scalars: Basic data types like Int , Float ,

String , Boolean , and ID .

Non-Null: Use ! to indicate a field cannot be

null.

Lists: Use [] to indicate a field is a list of

values.

Queries and Mutations in Schema

Define entry points for querying and mutating

data.

type Query {

 user(id: ID!): User

 posts: [Post!]

}

type Mutation {

 createUser(name: String!, email:

String): User

 updatePost(id: ID!, title: String):

Post

}

Interfaces and Unions

Interface: Defines a set of fields that concrete

types must implement.

interface Node {

 id: ID!

}

type User implements Node {

 id: ID!

 name: String!

}

Union: Defines a set of possible types a field

can return.

union SearchResult = User |

Post

type Query {

 search(term: String!):

[SearchResult]

}

Page 1 of 2 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/585-graphql-api-cheatsheet
http://cheatsheetshero.com/user/all/585-graphql-api-cheatsheet
http://cheatsheetshero.com/user/all/585-graphql-api-cheatsheet
https://cheatsheetshero.com/

GraphQL Queries

GraphQL Mutations

Basic Query Structure

A GraphQL query specifies what data to fetch.

query {

 user(id: "123") {

 id

 name

 email

 posts {

 title

 }

 }

}

The query selects the user with id: "123"

and requests the id , name , email , and

posts (including their title).

Arguments

Pass arguments to fields to filter or modify the

results.

query {

 posts(limit: 10, orderBy:

"createdAt_DESC") {

 id

 title

 content

 }

}

The query fetches the 10 most recently created

posts.

Aliases

Use aliases to rename fields in the response,

especially when querying the same field with

different arguments.

query {

 recentPosts: posts(limit: 5) {

 title

 }

 featuredPosts: posts(orderBy:

"likes_DESC", limit: 3) {

 title

 }

}

This query fetches both the 5 most recent posts

and the 3 most liked posts, each with their own

alias.

Fragments

Use fragments to reuse field selections across

multiple queries.

fragment PostFields on Post {

 id

 title

 content

}

query {

 recentPosts: posts(limit: 5) {

 ...PostFields

 }

 featuredPosts: posts(orderBy:

"likes_DESC", limit: 3) {

 ...PostFields

 }

}

The PostFields fragment is used in both

recentPosts and featuredPosts queries.

Basic Mutation Structure

A GraphQL mutation modifies data on the server.

mutation {

 createUser(name: "John Doe", email:

"john.doe@example.com") {

 id

 name

 email

 }

}

This mutation creates a new user with the

provided name and email, and returns the id ,

name , and email of the newly created user.

Variables

Use variables to make mutations dynamic.

Variables:

mutation CreateUser($name: String!,

$email: String!) {

 createUser(name: $name, email: $email)

{

 id

 name

 email

 }

}

{

 "name": "Jane Smith",

 "email": "jane.smith@example.com"

}

This mutation uses variables name and email

to create a new user.

Updating and Deleting Data

Mutations can also be used to update and delete

data.

mutation UpdatePost($id: ID!, $title:

String) {

 updatePost(id: $id, title: $title) {

 id

 title

 content

 }

}

mutation DeletePost($id: ID!) {

 deletePost(id: $id) {

 id

 }

}

These mutations update the title of a post and

delete a post, respectively.

Page 2 of 2 https://cheatsheetshero.com

https://cheatsheetshero.com/

