
Domain-Driven Design (DDD) Cheatsheet
A concise reference for Domain-Driven Design principles, patterns, and practices to help build software that closely reflects the business domain.

Core Concepts

Tactical Patterns

Strategic Patterns

Domain

The domain is the specific subject area to which

the user applies a program. DDD focuses on

understanding and modeling this domain.

Key aspect: Shared understanding between

developers and domain experts.

Ubiquitous Language: A common language used

by all team members (developers, domain

experts, etc.) to avoid misunderstandings.

Key aspect: Improves communication and

reduces ambiguity in code and documentation.

Bounded Context

A bounded context defines the scope in which a

particular domain model applies. It represents a

semantic boundary.

Key aspect: Isolates domain models, preventing

them from becoming overly complex.

Each bounded context should have its own

Ubiquitous Language.

Key aspect: Ensures clarity and consistency

within the context.

Strategic vs. Tactical DDD

Strategic

DDD

Focuses on the big picture:

understanding the overall domain,

identifying bounded contexts, and

defining relationships between

them.

Tactical

DDD

Focuses on the implementation

details within a single bounded

context: designing aggregates,

entities, value objects, and domain

services.

Entities

An entity is an object with a distinct identity that

persists over time. The identity, rather than the

attributes, distinguishes one entity from another.

Example: A Customer identified by their ID,

even if their address changes.

Entities have a lifecycle and can change state.

Key aspect: Focus on identity, state, and

behavior.

Value Objects

A value object is an immutable object defined by

its attributes. Two value objects are considered

equal if their attributes are equal.

Example: An Address consisting of street, city,

and zip code. Changing any part of the address

creates a new Address object.

Value objects are often used to represent

concepts that don’t have a unique identity.

Key aspect: Immutability, equality based on

attributes, and conceptual wholeness.

Aggregates

An aggregate is a cluster of associated objects

that are treated as a single unit for data changes.

One entity within the aggregate is designated as

the aggregate root.

Example: An Order aggregate with the Order

as the root, containing OrderItem value

objects.

All external access to the aggregate is controlled

through the aggregate root.

Key aspect: Enforces consistency and

encapsulates complexity.

Domain Services

A domain service is a stateless operation that

performs a significant process in the domain that

doesn’t naturally fit within an entity or value

object.

Example: A TransferService that transfers

money between two accounts.

Services often involve multiple entities or external

systems.

Key aspect: Represents domain logic that

transcends single objects.

Repositories

A repository provides an abstraction for

accessing data persistence. It acts as a

collection-like interface for domain objects.

Example: A CustomerRepository that provides

methods for finding, adding, and removing

Customer entities.

Repositories decouple the domain model from

the data access layer.

Key aspect: Enables easier testing and switching

between persistence mechanisms.

Context Mapping

Context Mapping is the process of defining the relationships between

bounded contexts.

Key aspect: Ensures clear understanding of dependencies and interactions

between different parts of the system.

Common context map patterns include:

Partnership: Two contexts collaborate closely and succeed or fail

together.

Shared Kernel: Two contexts share a subset of the domain model.

Customer-Supplier: One context provides services to another.

Conformist: One context aligns its model to the upstream context.

Anticorruption Layer: A layer that translates between different models

to prevent corruption of the downstream context.

Subdomains

A subdomain is a specific area within the overall domain. Identifying

subdomains helps to break down the complexity of the problem.

Key aspect: Focus on different areas of expertise and responsibility.

Subdomains can be classified as:

Core Domain: The most important and differentiating part of the

business.

Supporting Subdomain: Important but not differentiating.

Generic Subdomain: Not specific to the business and can be purchased

off-the-shelf.

Page 1 of 2 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/602-domain-driven-design-ddd-cheatsheet
http://cheatsheetshero.com/user/all/602-domain-driven-design-ddd-cheatsheet
http://cheatsheetshero.com/user/all/602-domain-driven-design-ddd-cheatsheet
https://cheatsheetshero.com/

Implementation Considerations

Event Storming

Event Storming is a workshop-based method for

collaboratively exploring a domain and identifying

key events, commands, and aggregates.

Key aspect: Facilitates communication and

shared understanding between developers and

domain experts.

Involves domain experts, developers, and testers

working together to model the domain on a large

surface using sticky notes.

Benefits: Quick way to visualize the domain and

identify potential problems.

CQRS (Command Query Responsibility

Segregation)

CQRS is a pattern that separates read and write

operations for a data store.

Key aspect: Allows for optimization of read and

write models independently.

Commands are used to update data, while

queries are used to retrieve data. This separation

can improve performance and scalability.

Considerations: Increases complexity and

requires eventual consistency for read models.

Eventual Consistency

Eventual Consistency is a consistency model

where updates to data may not be immediately

reflected in all replicas or read models.

Key aspect: Data will eventually become

consistent, but there may be a delay.

Often used in distributed systems and CQRS

architectures.

Considerations: Requires careful handling of

potential data inconsistencies.

Page 2 of 2 https://cheatsheetshero.com

https://cheatsheetshero.com/

