
Computer Science Essentials Cheatsheet
A concise reference for fundamental computer science concepts, algorithms, data structures, and programming paradigms. Ideal for students and

professionals alike.

Core Concepts

Programming Paradigms

Data Structures

Arrays Contiguous memory blocks; efficient

for random access (O(1) lookup by

index).

Linked

Lists

Nodes containing data and a pointer

to the next node; efficient for

insertion/deletion (O(1) if location is

known).

Stacks LIFO (Last-In, First-Out) data

structure. Push (add), Pop (remove)

operations.

Queues FIFO (First-In, First-Out) data

structure. Enqueue (add), Dequeue

(remove) operations.

Hash

Tables

Key-value pairs; efficient for search,

insertion, and deletion (average O(1)

time complexity).

Trees Hierarchical data structure; Binary

Search Trees (BSTs) allow for efficient

searching, insertion and deletion

(O(log n) average).

Graphs Nodes connected by edges; used to

represent relationships between

objects. Can be directed or

undirected.

Algorithms

Sorting

Algorithms

Examples include Bubble Sort,

Insertion Sort, Merge Sort,

Quick Sort. Different algorithms

have different time complexities

and suitability for various data

sets.

Searching

Algorithms

Linear Search (O(n)), Binary

Search (O(log n) - requires

sorted data).

Graph

Algorithms

Examples: Breadth-First Search

(BFS), Depth-First Search (DFS),

Dijkstra’s Algorithm (shortest

path), Prim’s Algorithm

(minimum spanning tree).

Dynamic

Programming

Optimizing by breaking

problems into overlapping

subproblems and storing

solutions to avoid redundant

computations.

Greedy

Algorithms

Making locally optimal choices

at each step with the hope of

finding a global optimum (not

always guaranteed).

Time Complexity (Big O Notation)

O(1): Constant time (e.g., accessing an element in

an array by index).

O(log n): Logarithmic time (e.g., binary search).

O(n): Linear time (e.g., linear search).

O(n log n): (e.g., merge sort, quicksort).

O(n^2): Quadratic time (e.g., bubble sort,

insertion sort).

O(2^n): Exponential time (e.g., brute-force

search).

O(n!): Factorial time (e.g., traveling salesman

problem brute-force).

Imperative Programming

Focuses on how to achieve a result by explicitly

changing the program’s state through commands

(statements).

Example: C, Java

Declarative Programming

Focuses on what result is desired, without

specifying the exact steps. Examples include

functional and logic programming.

Example: Haskell, SQL

Object-Oriented Programming (OOP)

Encapsulation Bundling data (attributes) and

methods that operate on that

data within a class.

Inheritance Creating new classes (derived

classes) from existing classes

(base classes), inheriting their

properties and behaviors.

Polymorphism The ability of an object to take

on many forms. Achieved

through method overriding and

interfaces.

Abstraction Hiding complex implementation

details and exposing only

essential information to the

user.

Examples Java, C++, Python

Functional Programming

Immutability Data cannot be changed after it

is created. Creates predictable

state.

Pure

Functions

Functions that always return

the same output for the same

input and have no side effects.

First-Class

Functions

Functions can be treated as

values, passed as arguments,

and returned from other

functions.

Examples Haskell, Lisp, Scala, JavaScript

(with functional libraries).

Page 1 of 2 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/618-computer-science-essentials-cheatsheet
http://cheatsheetshero.com/user/all/618-computer-science-essentials-cheatsheet
http://cheatsheetshero.com/user/all/618-computer-science-essentials-cheatsheet
https://cheatsheetshero.com/


Computer Architecture

Networking Fundamentals

CPU Components

ALU

(Arithmetic

Logic Unit)

Performs arithmetic and logical

operations.

Control Unit Fetches instructions from

memory and decodes them,

coordinating the activities of

the CPU.

Registers Small, fast storage locations

within the CPU used to hold

data and instructions that are

being actively processed.

Cache

Memory

Small, fast memory that stores

frequently accessed data,

reducing the time needed to

retrieve it from main memory

(RAM).

Memory Hierarchy

CPU Registers -> Cache Memory (L1, L2, L3) ->

RAM (Main Memory) -> Solid State Drive (SSD) /

Hard Disk Drive (HDD).

Speed and cost decrease as you move down the

hierarchy, while capacity increases.

Input/Output (I/O)

Input

Devices

Keyboard, Mouse, Scanner,

Microphone

Output

Devices

Monitor, Printer, Speakers

I/O

Controllers

Manage data transfer between

the CPU and I/O devices.

Operating Systems (OS)

Manages hardware resources, provides services

to applications (e.g., memory management, file

system, process scheduling).

Examples: Windows, macOS, Linux.

OSI Model

A conceptual model that standardizes the

communication functions of a

telecommunication or computing system without

regard to its underlying internal structure and

technology.

Layers:

7. Application

6. Presentation

5. Session

4. Transport

3. Network

2. Data Link

1. Physical

TCP/IP Model

A practical model for network communication

used on the Internet.

Layers:

4. Application

3. Transport

2. Internet

1. Network Access (Data Link + Physical)

Common Protocols

HTTP/HTTPS Hypertext Transfer Protocol

(Secure). Used for web browsing.

TCP Transmission Control Protocol.

Provides reliable, ordered delivery

of data.

UDP User Datagram Protocol. Provides

fast, connectionless delivery of

data (unreliable).

IP Internet Protocol. Provides

addressing and routing of data

packets.

DNS Domain Name System. Translates

domain names (e.g., google.com)

to IP addresses.

Network Devices

Routers Forward data packets between

networks.

Switches Connect devices within a network.

Firewalls Protect networks from unauthorized

access.

Page 2 of 2 https://cheatsheetshero.com

https://cheatsheetshero.com/

