
GnuPG (GPG) Cheatsheet
A comprehensive guide to using GnuPG (GPG) for encryption, signing, and key management. This cheatsheet covers essential commands and

workflows for securing your communications and data.

Key Management

Generating Keys

Generate a new key pair:

This command starts an interactive process to

generate a new key pair. You’ll be prompted for

various options like key type, key size, and

expiration date.

gpg --gen-key

Generate a new key pair with dialogs for all

options:

Provides more detailed options during key

generation, such as selecting the key algorithm

and curve.

gpg --full-gen-key

Batch Key Generation (without interaction):

Automates key generation, useful for scripting.

Replace Your Name and

your.email@example.com with your actual

information.

gpg --batch --gen-key <(echo '%no-

protection\n%transient-key\nKey-Type:

Ed25519\nName-Real: Your Name\nName-

Email: your.email@example.com\nExpire-

Date: 0\n%commit\n')

Listing Keys:

These commands display the keys in your keyring.

Public keys are used to encrypt messages to you,

while secret keys are used to decrypt messages

and sign documents.

gpg --list-keys # List public

keys

gpg --list-secret-keys # List secret

keys

gpg -k # Short form for

list public keys

gpg -K # Short form for

list secret keys

Listing Keys with Fingerprints:

Display the fingerprint of a specific key. Very

important for verifying key identity with others.

gpg --fingerprint <KEY_ID>

Exporting and Importing Keys

Exporting Keys:

Exports the key in

binary format.

gpg -o key.gpg

--export

<KEY_ID>

Exporting Keys in ASCII:

Exports the key in an ASCII

armored format, suitable

for sharing via text.

gpg -o key.asc --

armor --export

<KEY_ID>

Importing Keys:

Imports keys from a

file.

gpg --import

key.gpg

gpg --import

key.asc

Importing with Merge-

Only Option:

Only updates existing keys

in your keyring, ignoring

new keys.

gpg --import key.asc

--import-options

merge-only

Exporting Secret

Key:

Exports the secret

key (keep this

secure!). Add --

armor for ASCII

format.

gpg -o secret-

key.gpg --

export-secret-

key <KEY_ID>

Considerations for Secret

Key Export:

Security: Treat the

exported secret key

with extreme care.

Backup: Export for

backup purposes,

storing it securely

offline.

Transfer: Use secure

methods (e.g.,

encrypted storage) if

transferring the secret

key.

Key Servers

Importing Keys from a Keyserver:

Downloads keys from a keyserver.

gpg --receive-keys <KEY_IDS>

Uploading Keys to a Keyserver:

Uploads your public key to a keyserver.

gpg --send-keys <KEY_IDS>

Refreshing Keys from a Keyserver:

Updates keys in your keyring from a keyserver.

gpg --refresh-keys

Searching for Keys on a Keyserver:

Searches for keys on a keyserver.

gpg --search-keys "<SEARCH STRING>"

Specifying a Keyserver:

Overrides the default keyserver. Add to

~/.gnupg/gpg.conf for persistent

configuration.

gpg --keyserver <URL> ...

Page 1 of 3 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/862-gnupg-gpg-cheatsheet
http://cheatsheetshero.com/user/all/862-gnupg-gpg-cheatsheet
http://cheatsheetshero.com/user/all/862-gnupg-gpg-cheatsheet
https://cheatsheetshero.com/

Encryption and Decryption

Signing and Verification

Public Key Encryption

Encrypting a File:

Encrypts secret.txt for the specified

recipient, creating secret.txt.gpg .

gpg -e -o secret.txt.gpg -r <RECIPIENT>

secret.txt

Specifying Recipient Options:

Use key ID, name, or email to specify the

recipient.

gpg -e -r <KEY_ID> ...

gpg -e -r "Bez" ...

gpg -e -r "bezalelhermoso@gmail.com" ...

Encrypting for Multiple Recipients:

Encrypts the file so that multiple recipients can

decrypt it.

gpg -e -r <RECIPIENT> -r

<ANOTHER_RECIPIENT> ... secret.txt

Important Notes:

Omitting -o|--output creates

<ORIGINAL_FILENAME>.gpg .

Public key encryption requires the recipient’s

public key.

Symmetric Encryption

Encrypting with a Shared Key:

Encrypts the file using a passphrase, prompting

for it during encryption. Anyone with the

passphrase can decrypt the file.

gpg --symmetric secret.txt

or

gpg -c secret.txt

Decryption

Decrypting a File:

Decrypts secret.txt.gpg into secret.txt .

gpg -d -o secret.txt secret.txt.gpg

Decrypting to Standard Output:

Prints the decrypted content to standard output

(terminal).

gpg -d secret.txt.gpg

Passphrase Prompt:

For symmetric encryption, you’ll be prompted for

the passphrase.

Important Notes:

Omitting -o|--output prints the output to

stdout.

Signing Files

Creating a Detached Signature:

Creates a detached signature file (file.txt.sig) for file.txt .

gpg -o file.txt.sig -b file.txt

Creating an Integrated Signature:

Creates an integrated signature, resulting in a binary file (signed-

file.txt.gpg).

gpg -o signed-file.txt.gpg -s file.txt

Signing and Encrypting:

Signs the file while encrypting it.

gpg -s -o secret.txt.gpg -r <RECIPIENT> secret.txt

Clearsigning a File:

Creates a human-readable signature embedded within the file (creates

file.txt.asc).

gpg --clearsign file.txt

Verifying Signatures

Verifying a Detached Signature:

Verifies the signature file (file.txt.sig) against the original file

(file.txt).

gpg --verify file.txt.sig file.txt

Verifying an Integrated Signature:

Verifies an integrated signature.

gpg --verify signed-file.txt.gpg

Verifying a Clearsigned File:

Verifies a clearsigned file.

gpg --verify file.txt.asc

Viewing Content of Signed File:

Decrypts and displays the content of a signed file.

gpg -d signed-file.txt.gpg

Page 2 of 3 https://cheatsheetshero.com

https://cheatsheetshero.com/

Advanced Usage and Troubleshooting

Trusting Keys

Trusting a Key Interactively:

In the interactive prompt:

Sets the level of trust you have in a key. This

helps GPG decide if signatures from this key are

valid.

gpg --edit-key <KEY_ID>

gpg> trust

gpg> save

Using Email/Name instead of Key ID:

You can often use the owner’s email or name (or

part thereof) instead of the key ID for --edit-

key .

Trust levels:

1: I don’t know or won’t say

2: I do NOT trust

3: I trust marginally

4: I trust fully

5: I trust ultimately

Managing GPG Components

Listing Components:

Lists all GPG components.

gpgconf --list-components

Killing a Component:

Kills a specific component (e.g., gpgconf --kill

dirmngr).

gpgconf --kill <COMPONENT>

Killing All Components:

Kills all running GPG components.

gpgconf --kill all

Restarting GPG Agent:

Restarts the GPG agent, which manages secret

keys.

gpgconf --launch gpg-agent

Parsing Keyring Data

Using Colon-Separated Output:

Produces output that is easily parsed with tools

like awk and grep .

gpg -k --with-colons

Quick Reference for Fields:

Refer to the GnuPG documentation for detailed

explanations of each field. Common fields include

Record Type, Validity, Key Length, Key ID,

Creation Date, and User ID.

Troubleshooting

“No secret key” error:

Ensure the correct secret key is present in your

keyring and that the GPG agent is running.

Signature verification failed:

Verify that you have the correct public key for the

signer and that the original file hasn’t been

altered.

GPG agent issues:

Try restarting the GPG agent using gpgconf --

kill gpg-agent followed by gpgconf --launch

gpg-agent .

Keyserver errors:

Try a different keyserver or check your network

connection.

Page 3 of 3 https://cheatsheetshero.com

https://cheatsheetshero.com/

