
Python
General Python Cheatsheet

Basics

Variables and Data Types

Variables

Variables are used to store data values.

Data Types

Python has several built-in data types, including:

x = 5 # Integer

y = 3.14 # Float

z = "Hello" # String

w = True # Boolean

v = [1,2,3] # List

t = (1,2,3) # Tuple

s = {1,2,3} # Set

d = {'a':1, 'b':2} # Dictionary

int : Integer numbers.

float : Floating-point numbers.

str : Strings (text).

bool : Boolean (True or False).

list : Ordered, mutable sequence of items.

tuple : Ordered, immutable sequence of items.

set : Unordered collection of unique items.

dict : Collection of key-value pairs.

Casting

Data types can be explicitly converted using casting:

x = int("5") # x is 5

y = float(2) # y is 2.0

z = str(3.14) # z is "3.14"

Slicing Strings and Lists

Slicing

Slicing is used to extract a portion of a string or list.

my_string = "Python"

my_list = [10, 20, 30, 40, 50]

[start:end] - Items from start up to (but not including) end.

[start:] - Items from start to the end of the sequence.

[:end] - Items from the beginning to end.

[start:end:step] - Items from start to end with step increment.

Examples

print(my_string[1:4]) # "yth"

print(my_list[2:]) # [30, 40, 50]

print(my_string[:3]) # "Pyt"

print(my_list[::2]) # [10, 30, 50]

print(my_string[::-1]) # "nohtyP" (reverse)

If Else Statements

If-Else

Conditional statements are used to execute different code blocks based on

conditions.

x = 10

y = 5

if condition: - Executes if condition is true.

elif condition: - Executes if the previous if/elif conditions are false

and the current condition is true.

else: - Executes if all previous conditions are false.

Examples

if x > y:

 print("x is greater than y")

elif x < y:

 print("x is less than y")

else:

 print("x is equal to y")

One-Line If Statement

print("x is greater") if x > y else print("x is smaller")

Page 1 of 30 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/927-python-cheatsheet
http://cheatsheetshero.com/user/all/927-python-cheatsheet
http://cheatsheetshero.com/user/all/927-python-cheatsheet
https://cheatsheetshero.com/

Loops

For Loop

Iterates over a sequence (list, tuple, string) or other iterable objects.

my_list = [1, 2, 3]

While Loop

Executes a block of code as long as a condition is true.

x = 0

Examples

for item in my_list:

 print(item)

while x < 3:

 print(x)

 x += 1

Break and Continue

break : Terminates the loop.

continue : Skips the rest of the current iteration and proceeds to the

next iteration.

for i in range(5):

 if i == 3:

 break # Exit loop when i is 3

 print(i)

for i in range(5):

 if i == 3:

 continue # Skip when i is 3

 print(i)

Functions

Functions

Functions are blocks of reusable code.

def greet(name):

 return f"Hello, {name}!"

def keyword is used to define a function.

return statement returns a value from the function.

Examples

print(greet("Alice")) # Output: Hello, Alice!

Lambda Functions

Anonymous functions defined using the lambda keyword.

add = lambda x, y: x + y

print(add(5, 3)) # Output: 8

File Handling

File Operations

open(filename, mode) : Opens a file.

mode : 'r' (read), 'w' (write), 'a' (append), 'b' (binary), '+'

(updating).

Writing to a file

file = open("my_file.txt", "w")

file.write("Hello, file!")

file.close()

read() : Reads the entire file.

readline() : Reads a single line.

readlines() : Reads all lines into a list.

write(string) : Writes a string to the file.

close() : Closes the file.

Examples

Reading from a file

file = open("my_file.txt", "r")

content = file.read()

print(content)

file.close()

Using with Statement

Automatically closes the file after the block is executed.

with open("my_file.txt", "r") as file:

 content = file.read()

 print(content)

Arithmetic Operations

Basic Operations

Python supports standard arithmetic operations:

x = 10

y = 3

+ : Addition

- : Subtraction

* : Multiplication

/ : Division

// : Floor Division (integer division)

% : Modulo (remainder)

** : Exponentiation

Examples

print(x + y) # 13

print(x - y) # 7

print(x * y) # 30

print(x / y) # 3.333...

print(x // y) # 3

print(x % y) # 1

print(x ** y) # 1000

Page 2 of 30 https://cheatsheetshero.com

https://cheatsheetshero.com/

Plus-Equals Operator

Plus-Equals (+=)

A shorthand operator that combines addition and assignment.

x = 5

x += y is equivalent to x = x + y

Examples

It also works with other arithmetic operations:

x += 3

print(x) # Output: 8

x -= 2 # x = x - 2

x *= 4 # x = x * 4

x /= 2 # x = x / 2

f-Strings (Python 3.6+)

f-Strings

A convenient way to embed expressions inside string literals for formatting.

name = "Alice"

age = 30

f-strings start with an f or F before the opening quote.

Expressions are placed inside curly braces {} .

Examples

print(f"My name is {name} and I am {age} years old.")

Output: My name is Alice and I am 30 years old.

Formatting Options

pi = 3.1415926535

print(f"Pi is approximately {pi:.2f}")

Output: Pi is approximately 3.14

Page 3 of 30 https://cheatsheetshero.com

https://cheatsheetshero.com/

Python Data Types & Casting Cheat Sheet

Strings

Definition: Immutable sequence of characters.

Creation:

Common Operations:

Concatenation: s1 + s2

Length: len(s)

Slicing: s[start:end:step]

Case Conversion: s.upper() , s.lower() ,

s.capitalize()

Stripping Whitespace: s.strip() ,

s.lstrip() , s.rstrip()

Finding Substrings: s.find(sub) ,

s.index(sub)

Replacing Substrings: s.replace(old,

new)

Splitting: s.split(sep)

Joining: sep.join(list_of_strings)

Formatting: f"Value: {variable}" ,

"Value: {}".format(variable)

s = "Hello, world!"

s = 'Hello, world!'

s = str(123) # Convert number to string

Examples:

string1 = "Python"

string2 = " is fun!"

combined = string1 + string2 #

Concatenation

print(combined) # Output: Python is

fun!

text = " Trim me "

print(text.strip()) # Output: Trim me

message = "hello world"

print(message[0:5]) # Output: hello

Numbers

Integers (int)

Whole numbers, positive or negative, without

decimals.

x = 10

y = -5

Floating-Point Numbers (float)

Numbers with a decimal point.

x = 3.14

y = -2.5

Complex Numbers (complex)

Numbers with a real and imaginary part (j).

z = 2 + 3j

Operators:

+, -, *, /, // (floor division), %, **

(exponentiation)

Examples:

a = 10

b = 3

print(a + b) # Output: 13

print(a / b) # Output:

3.3333333333333335

print(a // b) # Output: 3

print(a % b) # Output: 1

print(a ** b) # Output: 1000

Booleans

Definition:

Represents truth values: True or False (case-

sensitive).

Boolean Operators:

and , or , not

Truthiness:

Most values are True . Values that evaluate to

False include: False , None , 0 , empty

strings (""), empty lists ([]), empty tuples

(()), empty dictionaries ({}), empty sets

(set()).

Comparison Operators:

== (equal), != (not equal), > (greater than),

< (less than), >= (greater than or equal to),

<= (less than or equal to)

Examples:

x = 5

y = 10

print(x > y) # Output: False

print(x < y and x > 0) # Output: True

print(not x == y) # Output: True

Page 4 of 30 https://cheatsheetshero.com

https://cheatsheetshero.com/

Lists

Definition: Ordered, mutable (changeable)

sequence of items.

Creation:

Common Operations:

Accessing Elements: my_list[index]

Slicing: my_list[start:end:step]

Length: len(my_list)

Adding Elements: my_list.append(item) ,

my_list.insert(index, item) ,

my_list.extend(another_list)

Removing Elements:

my_list.remove(item) ,

my_list.pop(index) , del

my_list[index]

Searching: item in my_list

Sorting: my_list.sort() ,

sorted(my_list)

Reversing: my_list.reverse()

my_list = [1, 2, 3, 'a', 'b']

my_list = list((1, 2, 3)) # Convert

tuple to list

Examples:

numbers = [1, 2, 3, 4, 5]

print(numbers[0]) # Output: 1

numbers.append(6)

print(numbers) # Output: [1, 2, 3, 4,

5, 6]

numbers.remove(3)

print(numbers) # Output: [1, 2, 4, 5,

6]

print(len(numbers)) # Output: 5

Tuples

Definition:

Ordered, immutable (unchangeable) sequence of

items.

Creation:

my_tuple = (1, 2, 3, 'a', 'b')

my_tuple = tuple([1, 2, 3]) # Convert

list to tuple

Common Operations:

Accessing Elements: my_tuple[index]

Slicing: my_tuple[start:end:step]

Length: len(my_tuple)

Counting: my_tuple.count(item)

Finding Index: my_tuple.index(item)

Immutability:

Tuples cannot be modified after creation. You

can’t add, remove, or change elements.

Examples:

point = (10, 20)

print(point[0]) # Output: 10

print(len(point)) # Output: 2

Sets

Definition: Unordered collection of unique items.

Creation:

Common Operations:

Adding Elements: my_set.add(item)

Removing Elements:

my_set.remove(item) ,

my_set.discard(item)

Membership Testing: item in my_set

Set Operations: union , intersection ,

difference , symmetric_difference

my_set = {1, 2, 3, 4, 5}

my_set = set([1, 2, 3]) # Convert list

to set

Set Operations:

Union: set1 | set2 or

set1.union(set2) (All elements in both

sets)

Intersection: set1 & set2 or

set1.intersection(set2) (Common

elements)

Difference: set1 - set2 or

set1.difference(set2) (Elements in set1

but not in set2)

Symmetric Difference: set1 ^ set2 or

set1.symmetric_difference(set2)

(Elements in either set, but not both)

Examples:

set1 = {1, 2, 3}

set2 = {3, 4, 5}

print(set1 | set2) # Output: {1, 2, 3,

4, 5}

print(set1 & set2) # Output: {3}

print(set1 - set2) # Output: {1, 2}

Page 5 of 30 https://cheatsheetshero.com

https://cheatsheetshero.com/

Dictionaries

Definition:

Unordered collection of key-value pairs. Keys

must be unique and immutable.

Creation:

my_dict = {'name': 'Alice', 'age': 30}

my_dict = dict(name='Bob', age=25)

Common Operations:

Accessing Values: my_dict[key]

Adding/Updating: my_dict[key] = value

Removing: del my_dict[key] ,

my_dict.pop(key)

Checking Key Existence: key in my_dict

Getting Keys: my_dict.keys()

Getting Values: my_dict.values()

Getting Items: my_dict.items()

Examples:

person = {'name': 'Alice', 'age': 30}

print(person['name']) # Output: Alice

person['city'] = 'New York'

print(person) # Output: {'name':

'Alice', 'age': 30, 'city': 'New York'}

del person['age']

print(person) # Output: {'name':

'Alice', 'city': 'New York'}

Casting

Definition: Converting a value from one data type

to another.

Functions:

int(x) : Converts x to an integer.

float(x) : Converts x to a floating-point

number.

str(x) : Converts x to a string.

bool(x) : Converts x to a boolean.

list(x) : Converts x to a list.

tuple(x) : Converts x to a tuple.

set(x) : Converts x to a set.

dict(x) : Converts x to a dictionary

(where x is a sequence of key-value pairs).

Examples:

x = "10"

y = int(x) # y is now 10 (integer)

z = float(x) # z is now 10.0 (float)

a = 1

b = bool(a) # b is True

list1 = [(1, 'a'), (2, 'b')]

dict1 = dict(list1)

print(dict1) # Output: {1: 'a', 2: 'b'}

Page 6 of 30 https://cheatsheetshero.com

https://cheatsheetshero.com/

Python Cheat Sheet: Heaps, Stacks, and Queues

Heaps (Priority Queues)

What is a Heap?

A heap is a tree-based data structure that satisfies the heap property: In a

min-heap, the value of each node is greater than or equal to the value of its

parent, with the minimum-value element at the root. In a max-heap, the

value of each node is less than or equal to the value of its parent, with the

maximum-value element at the root.

heapq Module

Python’s heapq module provides an implementation of the heap queue

algorithm (also known as the priority queue algorithm).

import heapq

heapify(iterable)

Transforms a list into a heap, in-place, in linear time.

heapq.heapify(x) # Transform list x into a heap

heappush(heap, item)

Pushes the item onto the heap , maintaining the heap invariant.

heapq.heappush(heap, item)

heappop(heap)

Pops and returns the smallest item from the heap , maintaining the heap

invariant. If the heap is empty, it raises an IndexError .

smallest = heapq.heappop(heap)

heappushpop(heap, item)

Pushes item on the heap , then pops and returns the smallest item from

the heap . More efficient than heappush() followed by heappop() .

smallest = heapq.heappushpop(heap, item)

heapreplace(heap, item)

Pops and returns the smallest item from the heap , and then pushes the

new item . More efficient than heappop() followed by heappush() .

smallest = heapq.heapreplace(heap, item)

Example: Creating and using a min-heap

import heapq

my_list = [4, 1, 7, 3, 8, 5]

heapq.heapify(my_list)

print(my_list) # Output: [1, 3, 5, 4, 8, 7]

smallest = heapq.heappop(my_list)

print(smallest) # Output: 1

print(my_list) # Output: [3, 4, 5, 7, 8]

heapq.heappush(my_list, 2)

print(my_list) # Output: [2, 3, 5, 7, 8, 4]

Finding the n largest/smallest elements

heapq offers functions to find the n largest or smallest elements without

fully sorting the data.

import heapq

numbers = [1, 4, 2, 10, 8, 5, 7]

largest_3 = heapq.nlargest(3, numbers)

smallest_3 = heapq.nsmallest(3, numbers)

print(largest_3) # Output: [10, 8, 7]

print(smallest_3) # Output: [1, 2, 4]

Max-Heap Implementation

Python’s heapq is a min-heap. To simulate a max-heap, insert the negative

of each value. When popping, negate the value again.

import heapq

numbers = [1, 4, 2, 10, 8, 5, 7]

max_heap = [-x for x in numbers]

heapq.heapify(max_heap)

largest = -heapq.heappop(max_heap)

print(largest) # Output: 10

Complexity Analysis

Heap (using heapq)

heapify(iterable) O(n)

heappush(heap, item) O(log n)

heappop(heap) O(log n)

heappushpop(heap, item) O(log n)

heapreplace(heap, item) O(log n)

Stack (using list)

append(item) (push) O(1) (amortized)

pop() O(1)

Queue (using collections.deque)

append(item) (enqueue) O(1)

popleft() (dequeue) O(1)

Page 7 of 30 https://cheatsheetshero.com

https://cheatsheetshero.com/

Queues (FIFO)

What is a Queue?

A queue is a linear data structure that follows the First-In, First-Out (FIFO)

principle. The first element added to the queue is the first element to be

removed.

Implementation with collections.deque

Python’s collections.deque (double-ended queue) is the preferred way to

implement a queue because it provides efficient append() and

popleft() operations.

from collections import deque

queue = deque()

Enqueue (append)

Adds an element to the rear of the queue.

queue.append(item)

Dequeue (popleft)

Removes and returns the front element from the queue. If the queue is

empty, it raises an IndexError .

front_element = queue.popleft()

Peek (front)

Returns the front element of the queue without removing it. Check for

emptiness before peeking.

def peek(queue):

 if not queue:

 return None

 return queue[0]

isEmpty

Checks if the queue is empty.

def is_empty(queue):

 return len(queue) == 0

Size

Returns the number of elements in the queue.

def size(queue):

 return len(queue)

Example: Using a queue

from collections import deque

queue = deque()

queue.append(10)

queue.append(20)

queue.append(30)

print(peek(queue)) # Output: 10

print(queue.popleft()) # Output: 10

print(is_empty(queue)) # Output: False

print(size(queue)) # Output: 2

Applications

Queues are used in many algorithms and scenarios, such as:

Breadth-First Search (BFS)

Task scheduling

Handling requests in web servers

queue.Queue

The queue.Queue class is useful for thread-safe queue operations.

import queue

q = queue.Queue()

q.put(item)

item = q.get()

Page 8 of 30 https://cheatsheetshero.com

https://cheatsheetshero.com/

Thread-safe Queues

queue.Queue Class

The queue.Queue class from the queue module is designed for thread-

safe queue operations, ensuring that multiple threads can safely access and

modify the queue.

import queue

q = queue.Queue(maxsize=0) # maxsize=0 means infinite queue size

put(item, block=True, timeout=None)

Places item into the queue. If block is true and the queue is full, it waits

until a free slot is available. If timeout is a positive number, it blocks at

most timeout seconds and raises queue.Full exception if no free slot

was available within that time.

q.put(item)

get(block=True, timeout=None)

Removes and returns an item from the queue. If block is true and the

queue is empty, it waits until an item is available. If timeout is a positive

number, it blocks at most timeout seconds and raises queue.Empty

exception if no item was available within that time.

item = q.get()

task_done()

Indicates that a formerly enqueued task is complete. Used by queue

consumers. For each get() used to fetch a task, a subsequent call to

task_done() tells the queue that the processing on the task is complete.

q.task_done()

join()

Blocks until all items in the queue have been gotten and processed. The

count of unfinished tasks goes up whenever an item is added to the queue.

The count goes down whenever a consumer thread calls task_done() to

indicate that the thread has finished working on the item.

q.join()

Example: Using queue.Queue in a multithreaded scenario

import queue

import threading

import time

def worker(q):

 while True:

 item = q.get()

 if item is None:

 break

 print(f'Processing: {item}')

 time.sleep(1)

 print(f'Finished: {item}')

 q.task_done()

q = queue.Queue()

threads = []

for i in range(3):

 t = threading.Thread(target=worker, args=(q,))

 t.start()

 threads.append(t)

for item in range(10):

 q.put(item)

block until all tasks are done

q.join()

stop workers

for i in range(3):

 q.put(None)

for t in threads:

 t.join()

Why use queue.Queue for thread safety?

queue.Queue provides built-in locking mechanisms that prevent race

conditions when multiple threads try to access the queue simultaneously.

Without such mechanisms, data corruption and unpredictable behavior can

occur.

Alternatives to queue.Queue

While queue.Queue is the standard for thread-safe queues, other libraries

like multiprocessing.Queue (for inter-process communication) and

asyncio.Queue (for asynchronous programming) offer similar

functionalities tailored to their respective environments.

Page 9 of 30 https://cheatsheetshero.com

https://cheatsheetshero.com/

Stacks (LIFO)

What is a Stack?

A stack is a linear data structure that follows the Last-In, First-Out (LIFO)

principle. The last element added to the stack is the first element to be

removed.

Implementation with Lists

Python lists can be easily used as stacks. The append() method adds an

element to the top, and the pop() method removes the top element.

stack = []

Push (append)

Adds an element to the top of the stack.

stack.append(item)

Pop

Removes and returns the top element from the stack. If the stack is empty, it

raises an IndexError .

top_element = stack.pop()

Peek (top)

Returns the top element of the stack without removing it. It’s a good practice

to check if the stack is empty before peeking.

def peek(stack):

 if not stack:

 return None

 return stack[-1]

isEmpty

Checks if the stack is empty.

def is_empty(stack):

 return len(stack) == 0

Size

Returns the number of elements in the stack.

def size(stack):

 return len(stack)

Example: Using a stack

stack = []

stack.append(10)

stack.append(20)

stack.append(30)

print(peek(stack)) # Output: 30

print(stack.pop()) # Output: 30

print(is_empty(stack)) # Output: False

print(size(stack)) # Output: 2

Applications

Stacks are used in many algorithms, such as:

Function call stack

Expression evaluation

Backtracking algorithms

Using collections.deque

For optimized stack operations, particularly in multi-threaded environments,

use collections.deque :

from collections import deque

stack = deque()

stack.append(item)

stack.pop()

Use cases and applications

Heaps:

Priority Queues: Managing tasks with different priorities.

Heap Sort: Efficient sorting algorithm.

Graph Algorithms: Dijkstra’s shortest path algorithm, Prim’s minimum

spanning tree algorithm.

Median Maintenance: Dynamically finding the median of a stream of

numbers.

Stacks:

Function Call Stack: Managing function calls and returns.

Expression Evaluation: Evaluating arithmetic expressions.

Backtracking Algorithms: Solving problems by exploring possible

solutions.

Undo/Redo Functionality: Implementing undo/redo operations in

applications.

Depth-First Search (DFS): Traversing trees and graphs.

Queues:

Breadth-First Search (BFS): Traversing trees and graphs.

Task Scheduling: Managing tasks in a specific order.

Web Server Request Handling: Processing incoming requests.

Print Queue: Managing print jobs.

Asynchronous Data Transfer: Handling data transfer between processes

or systems.

Real-world examples

Heaps: Task schedulers in operating systems.

Stacks: Browser history (back button).

Queues: Customer service call centers.

Page 10 of 30 https://cheatsheetshero.com

https://cheatsheetshero.com/

Python Strings

Array-like Operations

list() Creates a list from an

iterable.

list('abc') # Output:

['a', 'b', 'c']

tuple() Creates a tuple from an

iterable.

tuple([1, 2, 3]) #

Output: (1, 2, 3)

len() Returns the length (number

of items) of an object.

len('hello') # Output:

5

[] (indexing) Access elements by index (0-

based).

'hello'[0] # Output:

'h'

[:] (slicing) Extract a sub-sequence.

'hello'[1:4] # Output:

'ell'

in operator Check if an element is

present.

'h' in 'hello' #

Output: True

+

(concatenation)

Concatenate sequences.

'hello' + ' world' #

Output: 'hello world'

Looping Through Strings

Iterating over each character in a string:

for char in 'Python':

 print(char)

Output:

P

y

t

h

o

n

Using enumerate to get both index and

character:

for index, char in enumerate('Python'):

 print(f'Character at index {index}

is {char}')

Output:

Character at index 0 is P

Character at index 1 is y

Character at index 2 is t

Character at index 3 is h

Character at index 4 is o

Character at index 5 is n

Looping through a string in reverse:

string = 'Python'

for char in reversed(string):

 print(char)

Output:

n

o

h

t

y

P

String Slicing

string[start

:end]

Extracts a portion of the string

from start (inclusive) to

end (exclusive).

'Python'[1:4] # Output:

'yth'

string[start

:]

Extracts from start to the

end of the string.

'Python'[2:] # Output:

'thon'

string[:end

]

Extracts from the beginning to

end (exclusive).

'Python'[:3] # Output:

'Pyt'

string[start

:end:step]

Extracts a portion with a

specified step.

'Python'[::2] # Output:

'Pto'

'Python'[::-1] # Output:

'nohtyP' (reverse)

Negative

Indices

Indices can be negative,

starting from the end (-1).

'Python'[-1] # Output:

'n'

'Python'[-2:] # Output:

'on'

String Length and Repetition

len(stri

ng)

Returns the number of characters in

the string.

len('Python') # Output: 6

string *

n

Repeats the string n times.

'Py' * 3 # Output: 'PyPyPy'

String Membership

substring in

string

Checks if substring is

present in string .

'yth' in 'Python' #

Output: True

'abc' in 'Python' #

Output: False

substring not

in string

Checks if substring is not

present in string .

'abc' not in 'Python' #

Output: True

Page 11 of 30 https://cheatsheetshero.com

https://cheatsheetshero.com/

String Concatenation

string1

+

string2

Concatenates two strings.

'Hello' + ' ' + 'World' #

Output: 'Hello World'

.join(it

erable)

Joins elements of an iterable into a

string.

'-'.join(['a', 'b', 'c']) #

Output: 'a-b-c'

f-

strings

String interpolation using f-strings

(Python 3.6+).

name = 'Alice'

age = 30

f'My name is {name} and I am

{age} years old.'

Output: 'My name is Alice

and I am 30 years old.'

String Formatting

Using .format() method:

'Hello, {}! You are {} years

old.'.format('World', 25)

Output: 'Hello, World! You are 25

years old.'

Formatting with named placeholders:

'Hello, {name}! You are {age} years

old.'.format(name='World', age=25)

Output: 'Hello, World! You are 25

years old.'

Using f-strings (Python 3.6+):

name = 'World'

age = 25

f'Hello, {name}! You are {age} years

old.'

Output: 'Hello, World! You are 25

years old.'

String Input

input

()

Reads a line from input, converts it to a

string, and returns it.

name = input('Enter your name:

')

print('Hello, ' + name + '!')

String `join()` Method

The join() method is used to concatenate

elements of an iterable (like a list or tuple) into a

single string.

words = ['Python', 'is', 'awesome']

separator = ' '

result = separator.join(words)

print(result) # Output: Python is

awesome

Joining with different separators:

numbers = ['1', '2', '3']

comma_separated = ', '.join(numbers)

print(comma_separated) # Output: 1, 2,

3

Joining characters of a string (less common):

word = 'Python'

spaced_word = ' '.join(word)

print(spaced_word) # Output: P y t h o

n

String `endswith()` Method

string.endswi

th(suffix)

Checks if the string ends with

the specified suffix .

filename =

'document.pdf'

filename.endswith('.pdf'

) # Output: True

filename.endswith('.txt'

) # Output: False

string.endswi

th(suffix,

start, end)

Checks if the string ends with

the specified suffix within

the specified start and

end positions.

text = 'Python is

great.'

text.endswith('great.',

8) # Output: True

Checking with a

tuple of suffixes:

You can pass a tuple of

suffixes to check if the string

ends with any of them.

filename = 'image.jpg'

filename.endswith(('.jpg

', '.png', '.gif')) #

Output: True

Page 12 of 30 https://cheatsheetshero.com

https://cheatsheetshero.com/

Python F-Strings Cheat Sheet

Introduction to F-Strings

F-strings (formatted string literals) are a powerful

and convenient way to embed expressions inside

string literals for formatting.

Introduced in Python 3.6, they provide a concise

and readable syntax.

They are faster than both % -formatting and

.format() string formatting methods.

To create an f-string, prefix the string with the

letter f or F .

Expressions inside the string are enclosed in curly

braces {} .

Example:

name = "Alice"

age = 30

print(f"My name is {name} and I am {age}

years old.")

Basic Usage

Variable

substitution
name = "Bob"

print(f"Hello, {name}!")

Output: Hello, Bob!

Evaluating

expressions
x = 10

y = 5

print(f"The sum of x and

y is {x + y}.") #

Output: The sum of x and

y is 15.

Calling

functions
def greet(name):

 return f"Hello,

{name}!"

print(f"

{greet('Charlie')}") #

Output: Hello, Charlie!

F-Strings Fill and Align

> Right alignment

num = 42

print(f"{num:>4}") # Output:

42

< Left alignment

text = "hello"

print(f"{text:<10}") #

Output: hello

^ Center alignment

word = "Python"

print(f"{word:^10}") #

Output: Python

= Forces the padding to be placed

after the sign but before the digits.

number = -123

print(f"{number:=10}") #

Output: - 123

Fill

character

Uses the specified character to fill

the remaining space.

number = 5

print(f"{number:0>4}") #

Output: 0005

F-Strings Type

d Integer type

num = 42

print(f"{num:d}") # Output: 42

f Float type

pi = 3.14159

print(f"{pi:.2f}") # Output: 3.14

s String type

text = "hello"

print(f"{text:s}") # Output: hello

b Binary type

number = 10

print(f"{number:b}") # Output: 1010

o Octal type

number = 10

print(f"{number:o}") # Output: 12

x Hexadecimal type (lowercase)

number = 255

print(f"{number:x}") # Output: ff

X Hexadecimal type (uppercase)

number = 255

print(f"{number:X}") # Output: FF

e Scientific notation (lowercase)

number = 1000

print(f"{number:e}") # Output:

1.000000e+03

E Scientific notation (uppercase)

number = 1000

print(f"{number:E}") # Output:

1.000000E+03

Page 13 of 30 https://cheatsheetshero.com

https://cheatsheetshero.com/

Python Lists Cheat Sheet

F-Strings Other Formatting Options

Precision for

floats
pi = 3.1415926535

print(f"{pi:.3f}") #

Output: 3.142

Thousands

separator
number = 1234567

print(f"{number:,}") #

Output: 1,234,567

Percentage

formatting
ratio = 0.75

print(f"{ratio:.2%}")

Output: 75.00%

Date formatting
import datetime

today =

datetime.datetime.now()

print(f"{today:%Y-%m-%d

%H:%M:%S}")

Output (example):

2024-01-01 12:00:00

F-Strings Sign

+ Indicates that a sign should be used

for both positive as well as negative

numbers.

num1 = 10

num2 = -10

print(f"{num1:+d}") # Output:

+10

print(f"{num2:+d}") # Output:

-10

(space)

Indicates that a space should be used

for positive numbers and a minus sign

for negative numbers.

num1 = 10

num2 = -10

print(f"{num1: d}") # Output:

10

print(f"{num2: d}") # Output:

-10

- Indicates that only negative numbers

should have a sign (default behavior).

num1 = 10

num2 = -10

print(f"{num1:-d}") # Output:

10

print(f"{num2:-d}") # Output:

-10

Escaping Characters in F-Strings

To include a literal curly brace in an f-string,

double it: {{ or }} .

Example:

print(f"{{This is not a variable}}") #

Output: {This is not a variable}

Backslashes cannot be directly included inside

the expression part of f-strings.

However, you can use a variable to hold the

backslash or use other escaping methods.

Example:

newline = "\n"

print(f"This is a new line{newline}")

Limitations of F-Strings

F-strings are evaluated at runtime, so they don’t

support comments inside the expression part.

F-strings cannot be used directly to specify the

format string in methods like str.format() or

% formatting.

They are most suitable for simple and readable

string formatting tasks.

Defining Lists

Lists are ordered, mutable collections of items.

Creating an empty list:

Creating a list with initial values:

my_list = []

my_list = list()

my_list = [1, 2, 3]

my_list = ['a', 'b', 'c']

my_list = [1, 'hello', 3.4]

Lists can contain mixed data types:

mixed_list = [1, "Hello", 3.4, True]

Nested Lists:

nested_list = [[1, 2], [3, 4]]

Generating Lists

Using range() :

numbers = list(range(5)) # [0, 1, 2, 3,

4]

numbers = list(range(2, 7)) # [2, 3, 4,

5, 6]

numbers = list(range(0, 10, 2)) # [0, 2,

4, 6, 8]

List Comprehensions:

squares = [x**2 for x in range(10)] #

[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

even_squares = [x**2 for x in range(10)

if x % 2 == 0] # [0, 4, 16, 36, 64]

Appending and Extending Lists

append(i

tem)

Adds an item to the end of the list.

my_list = [1, 2, 3]

my_list.append(4) # my_list

is now [1, 2, 3, 4]

extend(i

terable)

Extends the list by appending

elements from an iterable.

my_list = [1, 2, 3]

my_list.extend([4, 5, 6]) #

my_list is now [1, 2, 3, 4,

5, 6]

insert(i

ndex,

item)

Inserts an item at a given position.

my_list = [1, 2, 3]

my_list.insert(1, 'hello') #

my_list is now [1, 'hello',

2, 3]

Page 14 of 30 https://cheatsheetshero.com

https://cheatsheetshero.com/

List Slicing

Slicing allows you to extract portions of a list.

list[start:end:step]

start : The index to start the slice

(inclusive). If omitted, defaults to 0.

end : The index to end the slice (exclusive).

If omitted, defaults to the length of the list.

step : The increment between each index.

If omitted, defaults to 1.

Examples:

my_list = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

my_list[2:5] # [2, 3, 4]

my_list[:3] # [0, 1, 2]

my_list[5:] # [5, 6, 7, 8, 9]

my_list[:] # [0, 1, 2, 3, 4, 5, 6, 7,

8, 9] (a copy of the list)

my_list[::2] # [0, 2, 4, 6, 8]

my_list[1::2] # [1, 3, 5, 7, 9]

my_list[::-1] # [9, 8, 7, 6, 5, 4, 3, 2,

1, 0] (reverses the list)

Removing Items

remove(ite

m)

Removes the first occurrence of

a value.

my_list = [1, 2, 3, 2]

my_list.remove(2) #

my_list is now [1, 3, 2]

pop(index

)

Removes and returns the item at

index. If index is not specified,

removes and returns the last

item.

my_list = [1, 2, 3]

item = my_list.pop(1) #

item is 2, my_list is now

[1, 3]

item = my_list.pop() #

item is 3, my_list is now

[1]

del

list[index

] or del

list[start:

end]

Deletes an item at a specific

index or a slice of the list.

my_list = [1, 2, 3, 4]

del my_list[1] # my_list

is now [1, 3, 4]

del my_list[1:3] # my_list

is now [1]

clear() Removes all items from the list.

my_list = [1, 2, 3]

my_list.clear() # my_list

is now []

Accessing Elements

Elements in a list are accessed using their index.

Indexing starts at 0.

my_list = ['a', 'b', 'c']

first_element = my_list[0] #

first_element is 'a'

second_element = my_list[1] #

second_element is 'b'

Negative Indexing: Access elements from the

end of the list.

my_list = ['a', 'b', 'c']

last_element = my_list[-1] #

last_element is 'c'

second_last = my_list[-2] # second_last

is 'b'

Concatenating Lists

Using the + operator:

list1 = [1, 2, 3]

list2 = [4, 5, 6]

combined_list = list1 + list2 #

combined_list is [1, 2, 3, 4, 5, 6]

Using extend() method:

list1 = [1, 2, 3]

list2 = [4, 5, 6]

list1.extend(list2) # list1 is now [1,

2, 3, 4, 5, 6]

Sorting and Reversing

sort()

Sorts the list in place (modifies the original list).

my_list = [3, 1, 4, 1, 5, 9, 2, 6]

my_list.sort() # my_list is now [1, 1,

2, 3, 4, 5, 6, 9]

my_list.sort(reverse=True) # my_list is

now [9, 6, 5, 4, 3, 2, 1, 1]

sorted()

Returns a new sorted list (does not modify the

original list).

my_list = [3, 1, 4, 1, 5, 9, 2, 6]

sorted_list = sorted(my_list) #

sorted_list is [1, 1, 2, 3, 4, 5, 6, 9],

my_list is unchanged

reverse()

Reverses the list in place.

my_list = [1, 2, 3, 4, 5]

my_list.reverse() # my_list is now [5,

4, 3, 2, 1]

reversed()

Returns an iterator that accesses the given

sequence in the reverse order.

my_list = [1, 2, 3, 4, 5]

reversed_list = list(reversed(my_list))

reversed_list is [5, 4, 3, 2, 1],

my_list is unchanged

Counting Elements

count(item) : Returns the number of times item

appears in the list.

my_list = [1, 2, 2, 3, 2, 4]

count = my_list.count(2) # count is 3

Repeating Lists

Using the * operator:

my_list = [1, 2, 3]

repeated_list = my_list * 3 #

repeated_list is [1, 2, 3, 1, 2, 3, 1,

2, 3]

Page 15 of 30 https://cheatsheetshero.com

https://cheatsheetshero.com/

Python Flow Control

Basic `if` Statement

The if statement is the fundamental control

structure in Python. It allows you to execute a

block of code only if a certain condition is true.

if condition:

 # Code to execute if the condition

is true

 statement1

 statement2

Example:

x = 10

if x > 5:

 print("x is greater than 5")

Here, the condition x > 5 is checked. If it’s true,

the indented block of code (the print

statement) is executed.

The indentation is crucial in Python. It defines the

scope of the code block associated with the if

statement. Consistent indentation (usually 4

spaces) is essential for correct execution.

Conditions can involve any comparison

operators:

== (equal to)

!= (not equal to)

> (greater than)

< (less than)

>= (greater than or equal to)

<= (less than or equal to)

`if...else` Statement

The if...else statement provides an

alternative block of code to execute if the if

condition is false.

if condition:

 # Code to execute if the condition

is true

 statement1

else:

 # Code to execute if the condition

is false

 statement2

Example:

x = 3

if x > 5:

 print("x is greater than 5")

else:

 print("x is not greater than 5")

In this case, since x is not greater than 5, the

code inside the else block is executed.

`if...elif...else` Statement

The if...elif...else statement allows you to

check multiple conditions in sequence. elif is

short for “else if”.

if condition1:

 # Code to execute if condition1 is

true

 statement1

elif condition2:

 # Code to execute if condition1 is

false and condition2 is true

 statement2

else:

 # Code to execute if all conditions

are false

 statement3

Example:

x = 5

if x > 5:

 print("x is greater than 5")

elif x < 5:

 print("x is less than 5")

else:

 print("x is equal to 5")

Here, the conditions are checked in order. If x is

greater than 5, the first block is executed. If x is

less than 5, the second block is executed.

Otherwise, the else block is executed.

You can have multiple elif blocks to handle

different scenarios.

One-Line `if` Statements (Conditional

Expressions)

Python allows you to write simple if...else

statements in a single line using conditional

expressions.

value_if_true if condition else

value_if_false

Example:

x = 10

y = 20 if x > 5 else 30

print(y) # Output: 20

This is equivalent to:

x = 10

if x > 5:

 y = 20

else:

 y = 30

print(y)

One-line if statements are best suited for

simple conditions and assignments. Avoid using

them for complex logic to maintain readability.

Nested `if` Statements

You can nest if statements inside other if

statements to create more complex decision-

making structures.

if condition1:

 if condition2:

 # Code to execute if both

condition1 and condition2 are true

 statement1

 else:

 # Code to execute if condition1

is true but condition2 is false

 statement2

else:

 # Code to execute if condition1 is

false

 statement3

Example:

x = 10

y = 5

if x > 5:

 if y > 2:

 print("x is greater than 5 and y

is greater than 2")

 else:

 print("x is greater than 5 but y

is not greater than 2")

else:

 print("x is not greater than 5")

Nesting can make code harder to read, so use it

judiciously and consider alternative approaches

like logical operators (and , or) when possible.

Page 16 of 30 https://cheatsheetshero.com

https://cheatsheetshero.com/

Using Logical Operators in `if` Statements

Logical operators (and , or , not) can

combine multiple conditions in an if

statement.

and : Returns True if both conditions are

true.

or : Returns True if at least one condition

is true.

not : Returns the opposite of the

condition’s value.

Examples:

x = 10

y = 5

if x > 5 and y > 2:

 print("Both conditions are true")

if x > 5 or y < 2:

 print("At least one condition is

true")

if not x < 5:

 print("x is not less than 5")

Using logical operators can simplify complex

nested if statements and improve readability.

Truthiness of Values

In Python, certain values are considered “truthy”

(evaluate to True in a boolean context) and

others are “falsy” (evaluate to False).

Falsy Values:

False

None

0 (zero of any numeric type)

Empty sequences (e.g., '' , [] , () ,

{})

Truthy Values:

All other values are considered truthy.

Example:

my_list = []

if my_list:

 print("List is not empty")

else:

 print("List is empty") # This will

be printed

You can directly use variables in if conditions

based on their truthiness, without explicitly

comparing them to True or False .

Page 17 of 30 https://cheatsheetshero.com

https://cheatsheetshero.com/

Python Loops Cheat Sheet

Basic For Loop

The basic for loop iterates through each item

in a sequence (like a list, tuple, or string).

Syntax:

Example:

for item in sequence:

 # Code to execute for each item

my_list = [1, 2, 3, 4, 5]

for number in my_list:

 print(number)

Iterating through a string:

my_string = "Python"

for char in my_string:

 print(char)

Iterating through a tuple:

my_tuple = (10, 20, 30)

for item in my_tuple:

 print(item)

For loop with conditional statement:

my_list = [1, 2, 3, 4, 5]

for number in my_list:

 if number % 2 == 0:

 print(f"{number} is even")

 else:

 print(f"{number} is odd")

Using _ as a variable name when the value is

not needed:

for _ in range(5):

 print("Hello")

For Loop with Index

To access both the item and its index, use the

enumerate() function.

Syntax:

Example:

for index, item in enumerate(sequence):

 # Code to execute with index and

item

my_list = ['apple', 'banana', 'cherry']

for index, fruit in enumerate(my_list):

 print(f"Index: {index}, Fruit:

{fruit}")

Starting the index from a different number (e.g.,

1):

my_list = ['apple', 'banana', 'cherry']

for index, fruit in enumerate(my_list,

start=1):

 print(f"Position: {index}, Fruit:

{fruit}")

Using enumerate with a conditional statement:

my_list = ['apple', 'banana', 'cherry']

for index, fruit in enumerate(my_list):

 if index % 2 == 0:

 print(f"Even Index: {index},

Fruit: {fruit}")

While Loop

The while loop executes a block of code as

long as a condition is true.

Syntax:

Example:

while condition:

 # Code to execute while the

condition is true

count = 0

while count < 5:

 print(count)

 count += 1

While loop with else :

count = 0

while count < 5:

 print(count)

 count += 1

else:

 print("Loop finished")

Using break to exit the loop:

count = 0

while True:

 print(count)

 count += 1

 if count >= 5:

 break

Using continue to skip to the next iteration:

count = 0

while count < 10:

 count += 1

 if count % 2 == 0:

 continue

 print(count)

Break Statement

The break statement is used to exit a loop

prematurely.

Example:

for i in range(10):

 if i == 5:

 break

 print(i)

Break nested loop:

for i in range(3):

 for j in range(3):

 if i == 1 and j == 1:

 break # Breaks only the

inner loop

 print(f"i={i}, j={j}")

Page 18 of 30 https://cheatsheetshero.com

https://cheatsheetshero.com/

Continue Statement

The continue statement skips the rest of the

current iteration and proceeds to the next

iteration of the loop.

Example:

for i in range(10):

 if i % 2 == 0:

 continue

 print(i)

Continue nested loop:

for i in range(3):

 for j in range(3):

 if i == 1 and j == 1:

 continue # Skips only the

inner loop iteration

 print(f"i={i}, j={j}")

Range Function

The range() function generates a sequence of

numbers.

Syntax:

start : The starting number (inclusive,

default is 0).

stop : The ending number (exclusive).

step : The increment between numbers

(default is 1).

Example:

range(start, stop, step)

for i in range(5):

 print(i)

Using start and stop :

for i in range(2, 7):

 print(i)

Using start , stop , and step :

for i in range(0, 10, 2):

 print(i)

Iterating in reverse:

for i in range(5, 0, -1):

 print(i)

Looping with Zip

The zip() function allows you to iterate over

multiple sequences in parallel.

Syntax:

Example:

for item1, item2, ... in zip(sequence1,

sequence2, ...):

 # Code to execute with items from

each sequence

names = ['Alice', 'Bob', 'Charlie']

ages = [25, 30, 28]

for name, age in zip(names, ages):

 print(f"{name} is {age} years old.")

Zip with different length lists:

list1 = [1, 2, 3]

list2 = ['a', 'b']

for item1, item2 in zip(list1, list2):

 print(item1, item2)

For/Else Construct

The else block in a for loop is executed if

the loop completes normally (i.e., without

encountering a break statement).

Syntax:

Example:

for item in sequence:

 # Code to execute

else:

 # Code to execute if the loop

completes without break

my_list = [1, 2, 3, 4, 5]

for number in my_list:

 if number == 6:

 print("Found 6!")

 break

else:

 print("6 not found in the list.")

For/else example with break:

my_list = [1, 2, 3, 4, 5]

for number in my_list:

 if number == 3:

 print("Found 3!")

 break

else:

 print("This will not be printed.")

Page 19 of 30 https://cheatsheetshero.com

https://cheatsheetshero.com/

Python Functions Cheat Sheet

Basic Function Definition

A function is a block of code that performs a

specific task. It’s reusable and makes code more

organized.

Syntax:

def function_name(parameters):

 """Docstring: Describes the

function"""

 # Function body (code to be

executed)

 return [expression] # Optional

return statement

Example:

def greet(name):

 """This function greets the person

passed in as a parameter."""

 print(f"Hello, {name}!")

Calling the function

greet("Alice") # Output: Hello, Alice!

Key Components:

def : Keyword indicating the start of a

function definition.

function_name : A unique identifier for the

function.

parameters : Input values the function

accepts (optional).

Docstring : A string literal providing

documentation (optional but recommended).

Function body : The code block to be

executed.

return : Optional statement to return a

value from the function.

Return Statement

The return statement exits a function and

optionally returns a value to the caller.

Syntax:

return [expression]

If no expression is provided, return returns

None .

def no_return():

 print("This function doesn't return

anything.")

 return

result = no_return()

print(result) # Output: None

Returning a Value:

def add(x, y):

 """Returns the sum of x and y."""

 return x + y

sum_result = add(5, 3)

print(sum_result) # Output: 8

Positional Arguments

Positional arguments are passed to a function

based on their order. The order matters!

Example:

def describe_person(name, age, city):

 """Describes a person's name, age,

and city."""

 print(f"Name: {name}, Age: {age},

City: {city}")

describe_person("Bob", 30, "New York")

Name: Bob, Age: 30, City: New York

If the arguments are not provided in the correct

order, the result might be unexpected:

describe_person(30, "New York", "Bob")

Name: 30, Age: New York, City: Bob

Keyword Arguments

Keyword arguments are passed to a function with

the parameter name explicitly specified. Order

doesn’t matter!

Syntax:

function_name(parameter1=value1,

parameter2=value2)

Example:

def describe_person(name, age, city):

 """Describes a person's name, age,

and city."""

 print(f"Name: {name}, Age: {age},

City: {city}")

describe_person(age=30, city="New York",

name="Bob") # Name: Bob, Age: 30, City:

New York

You can mix positional and keyword arguments,

but positional arguments must come first.

describe_person("Bob", age=30, city="New

York") # Valid

describe_person(name="Bob", 30, "New

York") # Invalid: positional argument

after keyword argument

Returning Multiple Values

Python functions can return multiple values as a

tuple.

Example:

def get_name_and_age():

 """Returns a name and an age."""

 name = "Charlie"

 age = 25

 return name, age

person_data = get_name_and_age()

print(person_data) # Output:

('Charlie', 25)

#Unpacking the tuple

name, age = get_name_and_age()

print(f"Name: {name}, Age: {age}") #

Output: Name: Charlie, Age: 25

The returned values are packed into a tuple. You

can then unpack the tuple into separate variables.

Page 20 of 30 https://cheatsheetshero.com

https://cheatsheetshero.com/

Default Argument Values

You can specify default values for function

parameters. If the caller doesn’t provide a value

for that parameter, the default is used.

Syntax:

def

function_name(parameter=default_value):

 # Function body

Example:

def greet(name="Guest"):

 """Greets a person, or Guest if no

name is provided."""

 print(f"Hello, {name}!")

greet() # Output: Hello, Guest!

greet("David") # Output: Hello, David!

Default values are evaluated only once, at the

point of function definition. Be careful when

using mutable default arguments (like lists or

dictionaries).

To avoid this, use None as the default and

create a new list inside the function if the

argument is None .

def append_to_list(value, my_list=[]):

 my_list.append(value)

 return my_list

print(append_to_list(1)) # Output: [1]

print(append_to_list(2)) # Output: [1,

2] (Unexpected!)

def append_to_list(value, my_list=None):

 if my_list is None:

 my_list = []

 my_list.append(value)

 return my_list

print(append_to_list(1)) # Output: [1]

print(append_to_list(2)) # Output: [2]

(Correct!)

Anonymous Functions (Lambda Expressions)

Lambda expressions are small, anonymous

functions defined using the lambda keyword.

They can have any number of arguments but only

one expression.

Syntax:

lambda arguments: expression

Example:

A lambda function that adds two

numbers

add = lambda x, y: x + y

result = add(3, 5)

print(result) # Output: 8

Lambda functions are often used with functions

like map() , filter() , and sorted() .

numbers = [1, 2, 3, 4, 5]

Square each number using map and a

lambda function

squared_numbers = list(map(lambda x:

x**2, numbers))

print(squared_numbers) # Output: [1, 4,

9, 16, 25]

Filter even numbers using filter and a

lambda function

even_numbers = list(filter(lambda x: x %

2 == 0, numbers))

print(even_numbers) # Output: [2, 4]

Variable Scope

The scope of a variable refers to the region of the

code where the variable is accessible.

Local Scope: Variables defined inside a

function have local scope. They are only

accessible within that function.

Global Scope: Variables defined outside of

any function have global scope. They are

accessible from anywhere in the code.

Example:

global_var = 10 # Global variable

def my_function():

 local_var = 5 # Local variable

 print(f"Inside function: global_var

= {global_var}")

 print(f"Inside function: local_var =

{local_var}")

my_function()

print(f"Outside function: global_var =

{global_var}")

print(f"Outside function: local_var =

{local_var}") # Error: local_var is not

defined

To modify a global variable from within a function,

you need to use the global keyword.

global_var = 10

def modify_global():

 global global_var

 global_var = 20

modify_global()

print(f"Global variable after

modification: {global_var}") # Output:

Global variable after modification: 20

Page 21 of 30 https://cheatsheetshero.com

https://cheatsheetshero.com/

Python Modules Cheat Sheet

Importing Modules

The most basic way to access code from another

module is to do a simple import statement.

This imports the module as a whole, and you need

to use the module name to access its contents.

import module_name

Accessing functions/attributes after importing a

module.

import math

x = math.sqrt(25) # Accessing the sqrt

function

print(x)

Importing with an alias (renaming the module).

This allows you to use a shorter or more

descriptive name for the module in your code.

import module_name as alias

import numpy as np

arr = np.array([1, 2, 3]) # Using the

alias 'np'

print(arr)

Importing a submodule

import package.module

#Example

import os.path

file_exists =

os.path.exists('my_file.txt')

print(file_exists)

Importing Specific Items From a Module

You can import specific functions or attributes

from a module using the from ... import ...

syntax.

This imports only the specified item, making it

directly accessible without needing to use the

module name.

from module_name import item_name

Importing multiple items from a module.

This can make your code more concise when you

only need a few specific items from a module.

from module_name import item1, item2,

item3

from math import sqrt, pi

radius = 5

area = pi * sqrt(radius)

print(area)

Importing an item with an alias.

This is useful for avoiding naming conflicts or

using a more descriptive name for the imported

item.

from module_name import item_name as

alias

from datetime import datetime as dt

now = dt.now()

print(now)

Importing Everything From a Module

You can import all names from a module’s symbol

table using the from ... import * syntax.

Warning: This is generally discouraged as it can

lead to naming conflicts and make your code

harder to understand.

from module_name import *

Example of importing all from a module (use with

caution!).

It is recommended to explicitly import the names

you need to avoid potential issues.

from math import *

x = sqrt(25) # Directly using sqrt

print(x)

Module Search Path

When you import a module, Python searches for

it in a specific order:

1. The current directory.

2. PYTHONPATH environment variable (if set).

3. Installation-dependent default directory.

You can view the module search path using the

sys module.

This will print a list of directories where Python

looks for modules.

import sys

print(sys.path)

Modifying the module search path (use with

caution!).

This allows you to import modules from custom

locations, but should be done carefully to avoid

conflicts.

import sys

sys.path.append('/path/to/your/module')

Functions and Attributes

dir(

modul

e)

Returns a list of valid attributes for that

object.

import math

print(dir(math))

__na

me__

Every Python module has a special

attribute called __name__ . When the

module is run as the main program,

__name__ is set to '__main__' .

Otherwise, it is set to the module’s name.

my_module.py

print(__name__)

When run as a script:

python my_module.py # Output:

__main__

When imported:

import my_module # Output:

my_module

help

(modu

le.fu

nctio

n)

Display the documentation for a

function.

import math

help(math.sqrt)

Page 22 of 30 https://cheatsheetshero.com

https://cheatsheetshero.com/

Packages

A package is a way of organizing related modules

into a directory hierarchy. Each package directory

contains a special file, __init__.py , which can

be empty or contain initialization code for the

package.

my_package/

 __init__.py

 module1.py

 module2.py

Importing from a package.

Or:

import my_package.module1

my_package.module1.my_function()

from my_package import module1

module1.my_function()

Using __init__.py to define package-level

imports.

Then:

my_package/__init__.py

from .module1 import my_function

from my_package import my_function

my_function()

Page 23 of 30 https://cheatsheetshero.com

https://cheatsheetshero.com/

Python Classes & Inheritance Cheat Sheet

Defining Classes

A class is a blueprint for creating objects

(instances). It defines attributes (data) and

methods (behavior).

class MyClass:

 # Class attributes (variables)

 class_variable = "Shared among all

instances"

 # Constructor (initializer)

 def __init__(self,

instance_variable):

 # Instance attributes

 self.instance_variable =

instance_variable

 # Method

 def my_method(self):

 return f"Instance variable:

{self.instance_variable}"

Example:

class Dog:

 species = "Canis familiaris"

 def __init__(self, name, age):

 self.name = name

 self.age = age

 def bark(self):

 return "Woof!"

Creating an instance of the Dog class

milo = Dog("Milo", 3)

print(milo.name) # Output: Milo

print(milo.age) # Output: 3

print(milo.species) # Output: Canis

familiaris

print(milo.bark()) # Output: Woof!

Constructors (__init__)

The __init__ method is a special method

called the constructor. It’s automatically called

when an object is created from the class.

class Person:

 def __init__(self, name, age):

 self.name = name

 self.age = age

 def greet(self):

 print(f"Hello, my name is

{self.name} and I am {self.age} years

old.")

Creating an object of the Person class

person1 = Person("Alice", 30)

person1.greet() # Output: Hello, my

name is Alice and I am 30 years old.

Key points about __init__ :

* It must have at least one parameter, self ,

which refers to the instance being created.

* It can have other parameters to receive initial

values for the instance’s attributes.

* It’s used to initialize the object’s state.

Methods

Methods are functions defined within a class that

operate on the object’s data.

class Rectangle:

 def __init__(self, width, height):

 self.width = width

 self.height = height

 def area(self):

 return self.width * self.height

 def perimeter(self):

 return 2 * (self.width +

self.height)

rect = Rectangle(5, 10)

print(rect.area()) # Output: 50

print(rect.perimeter()) # Output: 30

Key points about methods:

They must have self as the first

parameter, which refers to the instance.

They can access and modify the object’s

attributes.

They define the object’s behavior.

Class Variables

Class variables are variables that are shared by all

instances of a class.

class Circle:

 pi = 3.14159 # Class variable

 def __init__(self, radius):

 self.radius = radius # Instance

variable

 def area(self):

 return Circle.pi *

self.radius**2 # Accessing class

variable

circle1 = Circle(5)

circle2 = Circle(10)

print(circle1.area()) # Output: 78.53975

print(circle2.area()) # Output: 314.159

Key points about class variables:

They are defined outside of the __init__

method.

They are accessed using the class name (e.g.,

ClassName.variable_name).

Changes to a class variable affect all

instances of the class.

Page 24 of 30 https://cheatsheetshero.com

https://cheatsheetshero.com/

The `super()` Function

The super() function is used to call a method

from a parent class.

class Animal:

 def __init__(self, name):

 self.name = name

 def speak(self):

 return "Generic animal sound"

class Dog(Animal):

 def __init__(self, name, breed):

 super().__init__(name) #

Calling the parent's constructor

 self.breed = breed

 def speak(self):

 return "Woof!"

dog = Dog("Buddy", "Golden Retriever")

print(dog.name) # Output: Buddy

print(dog.breed) # Output: Golden

Retriever

print(dog.speak()) # Output: Woof!

Key points about super() :

It simplifies calling methods from parent

classes, especially in multiple inheritance

scenarios.

It automatically passes the instance (self)

to the parent’s method.

The `__repr__()` Method

The __repr__ method is a special method used

to represent an object as a string. It’s used for

debugging and logging.

class Point:

 def __init__(self, x, y):

 self.x = x

 self.y = y

 def __repr__(self):

 return f"Point(x={self.x}, y=

{self.y})"

p = Point(2, 3)

print(p) # Output: Point(x=2,

y=3)

print(repr(p)) # Output: Point(x=2,

y=3)

Key points about __repr__ :

It should return a string that can be used to

recreate the object.

If __str__ is not defined, __repr__ is

used when str() is called on the object.

User-Defined Exceptions

You can create your own exception classes by

inheriting from the built-in Exception class.

class CustomError(Exception):

 """Base class for other

exceptions"""

 pass

class InputError(CustomError):

 """Exception raised for errors in

the input."""

 def __init__(self, expression,

message):

 self.expression = expression

 self.message = message

try:

 raise InputError("demo", "Invalid

input!")

except InputError as e:

 print(f"Error: {e.message}")

Key points about user-defined exceptions:

They allow you to handle specific error

conditions in your code.

They make your code more readable and

maintainable.

Polymorphism

Polymorphism means “many forms”. In object-

oriented programming, it refers to the ability of a

single interface to represent different types.

class Cat:

 def speak(self):

 return "Meow!"

class Dog:

 def speak(self):

 return "Woof!"

def animal_sound(animal):

 return animal.speak()

cat = Cat()

dog = Dog()

print(animal_sound(cat)) # Output: Meow!

print(animal_sound(dog)) # Output: Woof!

Key points about polymorphism:

It allows you to write code that can work

with objects of different classes in a uniform

way.

It promotes code reusability and flexibility.

Overriding

Overriding is the ability of a subclass to provide a

specific implementation of a method that is

already defined in its superclass.

class Animal:

 def speak(self):

 return "Generic animal sound"

class Dog(Animal):

 def speak(self):

 return "Woof!"

animal = Animal()

dog = Dog()

print(animal.speak()) # Output: Generic

animal sound

print(dog.speak()) # Output: Woof!

Key points about overriding:

The method in the subclass must have the

same name, parameters, and return type as

the method in the superclass.

It allows you to customize the behavior of a

subclass without modifying the superclass.

Page 25 of 30 https://cheatsheetshero.com

https://cheatsheetshero.com/

Inheritance

Inheritance is a mechanism by which a new class

(subclass) can be created from an existing class

(superclass), inheriting its attributes and

methods.

class Vehicle:

 def __init__(self, model, color):

 self.model = model

 self.color = color

 def description(self):

 return f"{self.color}

{self.model}"

class Car(Vehicle):

 def __init__(self, model, color,

num_doors):

 super().__init__(model, color)

 self.num_doors = num_doors

 def description(self):

 return f"

{super().description()},

{self.num_doors} doors"

my_car = Car("Sedan", "Red", 4)

print(my_car.description()) # Output:

Red Sedan, 4 doors

Key points about inheritance:

It promotes code reusability by allowing you

to reuse existing code.

It creates a hierarchy of classes, making your

code more organized and maintainable.

Subclasses can add new attributes and

methods or override existing ones.

Page 26 of 30 https://cheatsheetshero.com

https://cheatsheetshero.com/

Python File Handling Cheat Sheet

Opening Files

open(filename, mode)

Opens a file. filename is the file path (string).

mode specifies the file opening mode (string).

Common Modes:

'r' : Read (default). Opens the file for

reading. Returns error if the file does not

exist.

'w' : Write. Opens the file for writing.

Creates a new file if it does not exist or

overwrites the file if it exists.

'a' : Append. Opens the file for appending.

Creates a new file if it does not exist.

'x' : Create. Creates a new file. Returns an

error if the file exists.

'b' : Binary. Opens the file in binary mode.

't' : Text (default). Opens the file in text

mode.

'+' : Update. Opens the file for updating

(reading and writing).

Example (Read):

f = open('my_file.txt', 'r')

content = f.read()

f.close()

print(content)

Example (Write):

f = open('my_file.txt', 'w')

f.write('Hello, world!')

f.close()

Reading Files

f.read(size)

Reads at most size characters/bytes from the

file. If size is omitted or negative, reads the

entire file.

f.readline()

Reads a single line from the file (including the

newline character).

f.readlines()

Reads all lines from the file and returns them as a

list of strings.

Example (Read lines):

f = open('my_file.txt', 'r')

for line in f:

 print(line.strip())

f.close()

Writing to Files

f.write(string)

Writes the contents of string to the file.

Returns the number of characters written.

f.writelines(list_of_strings)

Writes a list of strings to the file.

Example (Write lines):

f = open('my_file.txt', 'w')

lines = ['Line 1\n', 'Line 2\n']

f.writelines(lines)

f.close()

Closing Files

f.close()

Closes the file. It is important to close files to free

up system resources and ensure that all data is

written to disk.

with open(filename, mode) as f:

Using the with statement automatically closes

the file, even if errors occur. This is the

recommended approach.

Example (with statement):

with open('my_file.txt', 'r') as f:

 content = f.read()

 print(content)

File is automatically closed here

File Object Attributes

f.clos

ed

Returns True if the file is closed,

False otherwise.

f.mod

e

Returns the file opening mode.

f.nam

e

Returns the name of the file.

Deleting Files

import os

os.remove(filename)

Deletes the file specified by filename . You

must first import the os module.

Example:

import os

file_path = 'my_file.txt'

if os.path.exists(file_path):

 os.remove(file_path)

 print(f'{file_path} deleted

successfully!')

else:

 print(f'{file_path} does not

exist!')

Checking if a File Exists

import os

os.path.exists(filename)

Checks if the file specified by filename exists.

Returns True if it exists, False otherwise.

Example:

import os

file_path = 'my_file.txt'

if os.path.exists(file_path):

 print(f'{file_path} exists!')

else:

 print(f'{file_path} does not

exist!')

Page 27 of 30 https://cheatsheetshero.com

https://cheatsheetshero.com/

Deleting Folders (Directories)

import os

os.rmdir(dirname)

Deletes the directory specified by dirname . The

directory must be empty.

shutil.rmtree(dirname) - To delete a

directory and all its contents, use

shutil.rmtree() .

Example (Empty Directory):

import os

dir_path = 'my_directory'

if os.path.exists(dir_path):

 os.rmdir(dir_path)

 print(f'{dir_path} deleted

successfully!')

else:

 print(f'{dir_path} does not exist!')

Example (Non-Empty Directory):

import shutil

import os

dir_path = 'my_directory'

if os.path.exists(dir_path):

 shutil.rmtree(dir_path)

 print(f'{dir_path} and its contents

deleted successfully!')

else:

 print(f'{dir_path} does not exist!')

Handling Exceptions

try: # Code that might raise an exception

except FileNotFoundError: # Handle the

exception finally: # Code that always

executes

Use try...except blocks to handle file-related

exceptions, such as FileNotFoundError or

IOError . The finally block is executed

regardless of whether an exception occurred.

Example:

try:

 f = open('nonexistent_file.txt',

'r')

 content = f.read()

 print(content)

except FileNotFoundError:

 print('File not found!')

finally:

 try:

 f.close()

 except NameError:

 pass # File was never opened

Page 28 of 30 https://cheatsheetshero.com

https://cheatsheetshero.com/

Python Miscellaneous

Comments

Single-line comments start with # .

This is a single-line comment

Multi-line comments (docstrings) are enclosed in

triple quotes (''' or """).

'''

This is a multi-line comment.

It can span multiple lines.

'''

"""

This is also a multi-line comment.

"""

Docstrings are used to document functions,

classes, modules, and methods.

def my_function():

 """This is a docstring for

my_function."""

 pass

Accessing docstrings: Use help(object) or

object.__doc__ .

help(my_function)

print(my_function.__doc__)

Comments should be clear and concise,

explaining the purpose of the code.

Generators

Generators are functions that use the yield

keyword to return a sequence of values lazily.

Instead of returning all values at once, generators

produce them one at a time, saving memory.

Example:

def my_generator(n):

 for i in range(n):

 yield i

Usage

for num in my_generator(5):

 print(num)

Generator expressions are a concise way to

create generators using a syntax similar to list

comprehensions.

my_generator = (i for i in range(5))

for num in my_generator:

 print(num)

Generators are iterable, meaning you can use

them in for loops or with functions like

next() .

The next() function retrieves the next item

from the generator. When the generator is

exhausted, it raises StopIteration .

g = my_generator(3)

print(next(g))

print(next(g))

print(next(g))

print(next(g)) # Raises StopIteration

Generator to List

You can convert a generator to a list using the

list() constructor. This will consume the

entire generator and store the results in a list.

Example:

def my_generator(n):

 for i in range(n):

 yield i

my_list = list(my_generator(5))

print(my_list)

Converting a generator to a list requires storing

all elements in memory, so be mindful of memory

usage for large generators.

Alternative: Process the generator’s output

iteratively instead of converting it to a list if

memory is a concern.

Combining list() with generator expressions:

my_list = list(i * 2 for i in range(5))

print(my_list)

Handle Exceptions

Use try and except blocks to handle

exceptions.

try:

 # Code that may raise an exception

 result = 10 / 0

except ZeroDivisionError as e:

 # Code to handle the exception

 print(f"Error: {e}")

You can handle multiple exception types in a

single try block.

try:

 # Code that may raise multiple

exceptions

 value = int(input("Enter a number:

"))

 result = 10 / value

except ZeroDivisionError as e:

 print(f"Division error: {e}")

except ValueError as e:

 print(f"Value error: {e}")

The else block executes if no exceptions are

raised in the try block.

try:

 result = 10 / 2

except ZeroDivisionError as e:

 print(f"Error: {e}")

else:

 print(f"Result: {result}")

The finally block always executes, regardless

of whether an exception was raised or not.

try:

 f = open("myfile.txt", "r")

 content = f.read()

except FileNotFoundError as e:

 print(f"File not found: {e}")

finally:

 if 'f' in locals():

 f.close()

Raise exceptions using the raise keyword.

def validate_age(age):

 if age < 0:

 raise ValueError("Age cannot be

negative")

 print("Age is valid")

try:

 validate_age(-1)

except ValueError as e:

 print(f"Error: {e}")

Page 29 of 30 https://cheatsheetshero.com

https://cheatsheetshero.com/

List Comprehensions

List comprehensions provide a concise way to

create lists based on existing iterables.

Syntax: [expression for item in iterable if

condition]

Example: Creating a list of squares.

squares = [x**2 for x in range(10)]

print(squares)

Example: Filtering even numbers.

numbers = [1, 2, 3, 4, 5, 6]

even_numbers = [x for x in numbers if x

% 2 == 0]

print(even_numbers)

List comprehensions can also be used with

nested loops.

matrix = [[1, 2, 3], [4, 5, 6], [7, 8,

9]]

flattened = [num for row in matrix for

num in row]

print(flattened)

List comprehensions are more readable and often

faster than traditional loops for creating lists.

Lambda Functions

Lambda functions are anonymous, small, and

inline functions defined using the lambda

keyword.

Syntax: lambda arguments: expression

Example: A lambda function that adds two

numbers.

add = lambda x, y: x + y

print(add(5, 3))

Lambda functions are often used with functions

like map() , filter() , and sorted() .

Example: Using map() with a lambda function

to square each element in a list.

numbers = [1, 2, 3, 4, 5]

squared_numbers = list(map(lambda x:

x**2, numbers))

print(squared_numbers)

Example: Using filter() with a lambda

function to filter even numbers.

numbers = [1, 2, 3, 4, 5, 6]

even_numbers = list(filter(lambda x: x %

2 == 0, numbers))

print(even_numbers)

Lambda functions can only contain a single

expression and cannot include statements or

annotations.

Page 30 of 30 https://cheatsheetshero.com

https://cheatsheetshero.com/

