
Prolog - Cheat Sheet
A quick reference guide to Prolog programming, covering syntax, data types, list manipulation, control flow, and built-in predicates.

Syntax Fundamentals

Clauses: Prolog programs are built from clauses, which are either facts or

rules.

Facts: Declare a relationship. parent(john, mary).  (John is a parent of

Mary)

Rules: Define relationships based on other relationships.

ancestor(X, Y) :- parent(X, Y).

ancestor(X, Y) :- parent(X, Z), ancestor(Z, Y).

Queries: Ask questions about the defined relationships.

?- parent(john, mary).

Variables: Start with an uppercase letter or underscore. X , Result ,

_value

Atom: Constant values, starting with lowercase letter. john , mary ,

apple

Comments: %  for single-line comments.

/* ... */  for multi-line comments.

Compound Terms: Structures built from a functor and arguments.

book(title, author)

Lists: Ordered collections of items.

[apple, banana, cherry]

[1, 2, 3]

Operators: Symbols for arithmetic, comparison, and logical operations.

+ , - , * , / , = , \=  (not equals), < , >

Unification: The process of matching terms.

X = 5.  (Assigns 5 to X)

term1 = term2.  (Attempts to unify term1 and term2)

Anonymous Variable: Represented by _ , used when a variable is needed

but its value is not important.

Data Types

Atoms: Symbolic constants. hello , world ,

atom_name

Numbers: Integers and floating-point numbers. 123 , -45 , 3.14 ,

-0.001

Variables: Represent unknown values. Must start

with an uppercase letter or underscore.

X , Result , _value

Structures: Complex terms built from functors

and arguments.

book(title, 

author) , point(1, 

2)

Lists: Ordered collections of elements (see next

page).

[1, 2, 3] , [a, b, 

c] , [head | tail]

Operators

+ , - , * , /

Arithmetic operators.

X + Y

Addition.

X / Y

Division.

//

Integer division.

X // Y

Integer division of X by Y.

mod

Modulo operator.

X mod Y

Remainder of X divided by Y.

is

Arithmetic evaluation.

X is Y

Evaluates Y and unifies the result with X.

=:=

Arithmetic equality.

X =:= Y

True if X and Y evaluate to the same number.

=\=

Arithmetic inequality.

X == Y

True if X and Y evaluate to different numbers.

> , < , >= , =<

Comparison operators.

X > Y

True if X is greater than Y.

X =< Y

True if X is less than or equal to Y.

=

Unification operator.

X = Y

True if X and Y can be unified.

\=

Not unifiable.

X = Y

True if X and Y cannot be unified.

==

Term equality (identical).

X == Y

True if X and Y are identical terms.

\==

Term inequality (not

identical).

X == Y

True if X and Y are not identical terms.

:-

Rule definition.

head :- body.

Defines a rule where head  is true if body  is

true.

Page 1 of 4 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/gabi-cool85-gs/1144-prolog-cheat-sheet
http://cheatsheetshero.com/user/gabi-cool85-gs/1144-prolog-cheat-sheet
http://cheatsheetshero.com/user/gabi-cool85-gs/1144-prolog-cheat-sheet
https://cheatsheetshero.com/


List Representation

Empty List: []

List with elements: [a, b, c]

Head and Tail: [Head | Tail]  where Head  is

the first element and Tail  is the rest of the list.

Accessing elements: Prolog lists are typically

accessed via unification and recursion, not direct

indexing.

List concatenation: Use append(List1, List2, 

Result)  to concatenate two lists.

Example:

append([1, 2], [3, 4], X).

% X = [1, 2, 3, 4].

Membership test: Use member(Element, List)

to check if an element is in a list.

Example:

member(3, [1, 2, 3]). % true

member(4, [1, 2, 3]). % false

Anonymous variable in lists: [_ | Tail]

ignores the head of the list.

Example:

?- [ _ , _ , X] = [1,2,3].

X = 3.

Common List Operations

Membership (member/2):

Checks if an element is in a

list.

member(X, [a, 

b, c]).

Concatenation (append/3):

Concatenates two lists.

append([1, 

2], [3, 4], 

Result).

Result = [1, 

2, 3, 4].

Prefix (prefix/2): Checks if a

list is a prefix of another list.

prefix([1, 

2], [1, 2, 3, 

4]).

Suffix (suffix/2): Checks if a

list is a suffix of another list.

suffix([3, 

4], [1, 2, 3, 

4]).

Sublist (sublist/2): Checks if a

list is a sublist of another list.

sublist([2, 

3], [1, 2, 3, 

4]).

Length (length/2):

Determines the length of a

list.

length([a, b, 

c], Length).

Length = 3.

Reverse (reverse/2): Reverses

the order of elements in a list.

reverse([a, 

b, c], 

Result).

Result = [c, 

b, a].

nth0/3: Access element at

index (0-based).

nth0(1, [a, 

b, c], 

Element).

Element = b.

nth1/3: Access element at

index (1-based).

nth1(2, [a, 

b, c], 

Element).

Element = b.

select/3: Select an element

from a list, resulting in a new

list without that element.

select(b, [a, 

b, c], 

Result).

Result = [a, 

c].

last/2: Retrieves the last

element of a list.

last([a, b, 

c], Last).

Last = c.

delete/3: Deletes all

occurrences of an element

from a list.

delete(a, [a, 

b, a, c], 

Result).

Result = [b, 

c].

Example: List processing

% Sum of elements in a list

sum_list([], 0).

sum_list([H|T], Sum) :-

    sum_list(T, RestSum),

    Sum is H + RestSum.

% Membership test

member(X, [X|_]).

member(X, [_|T]) :-

    member(X, T).

% List concatenation

append([], L, L).

append([H|T], L, [H|Result]) :-

    append(T, L, Result).

% Reversing a list

reverse(L, R) :-

    reverse_helper(L, [], R).

reverse_helper([], Acc, Acc).

reverse_helper([H|T], Acc, R) :-

    reverse_helper(T, [H|Acc], R).

% Find the last element of a list

last([X], X).

last([_|T], X) :-

    last(T, X).

% Remove duplicates from a list

remove_duplicates([], []).

remove_duplicates([H|T], Result) :-

    member(H, T),

    remove_duplicates(T, Result).

remove_duplicates([H|T], [H|Result]) :-

    \+ member(H, T),

    remove_duplicates(T, Result).

Page 2 of 4 https://cheatsheetshero.com

https://cheatsheetshero.com/


Control Flow

Conjunction ( , ): A, B  - A and B must both be true.

Disjunction ( ; ): A; B  - A or B must be true.

Negation ( \+ ): \+ A  - A must be false.

If-Then-Else ( -> ; ): (Condition -> Then ; Else)  - If Condition is true,

Then is executed; otherwise, Else is executed.

Call: call(A)  - Executes the goal A . Useful for meta-programming.

Once: once(A)  - Executes goal A , but only the first solution is returned.

Prevents Prolog from backtracking to find alternative solutions.

Repeat: repeat.  - Always succeeds and can be used to generate multiple

solutions through backtracking. Must be used with a cut ( ! ) to avoid

infinite loops.

Example:

repeat.

process.

!. % Cut to prevent infinite backtracking

Fail: fail.  - Always fails, forcing backtracking. Useful for creating loops

and testing.

True: true.  - Always succeeds. Useful as a placeholder or to satisfy a

condition.

Useful Built-in Predicates

true/0 : Always succeeds. true.

fail/0 : Always fails. fail.

not/1 : Negation (same as \+ ). not(member(4, [1, 2, 3])).

=/2 : Unification (attempts to make two

terms equal).

X = 5.

is/2 : Evaluates an arithmetic

expression.

X is 2 + 3.

write/1 : Prints a term to the console. write('Hello, world!').

nl/0 : Prints a newline character. nl.

read/1 : Reads a term from the console. read(X).

display/1 : Displays a term using prefix

notation.

display(+(1,2)).  % Displays:

+(1,2)

atom_string/2 : Converts between

atoms and strings.

atom_string(hello, 

"hello").

number_string/2 : Converts between

numbers and strings.

number_string(123, "123").

current_predicate/1 : Checks if a

predicate is currently defined.

current_predicate(member/2)

.

arg/3 : Accesses the arguments of a

compound term.

arg(2, f(a, b, c), X). % X 

= b

functor/3 : Retrieves or defines the

functor and arity of a term.

functor(term(a,b), F, N). % 

F = term, N = 2

Page 3 of 4 https://cheatsheetshero.com

https://cheatsheetshero.com/


Family Relationships

parent(john, mary).

parent(john, peter).

parent(susan, mary).

parent(susan, peter).

male(john).

female(susan).

father(X, Y) :- parent(X, Y), male(X).

mother(X, Y) :- parent(X, Y), female(X).

sibling(X, Y) :- parent(Z, X), parent(Z, 

Y), X \= Y.

Queries:

?- father(john, mary).

?- sibling(mary, peter).

List Manipulation

% Reverse a list

reverse_list(List, Reversed) :-

    reverse_list(List, [], Reversed).

reverse_list([], Acc, Acc).

reverse_list([H|T], Acc, Reversed) :-

    reverse_list(T, [H|Acc], Reversed).

Queries:

?- reverse_list([1, 2, 3], Reversed).

Simple AI: Expert System

% Rules for diagnosing a problem

symptom(cough).

symptom(fever).

symptom(runny_nose).

disease(flu) :-

    symptom(fever),

    symptom(cough),

    symptom(runny_nose).

disease(cold) :-

    symptom(cough),

    symptom(runny_nose),

    \+ symptom(fever).

Queries:

?- disease(X).

Page 4 of 4 https://cheatsheetshero.com

https://cheatsheetshero.com/

