

Osi Modell

A comprehensive cheat sheet detailing the OSI (Open Systems Interconnection) model, its layers, functions, and protocols. Perfect for networking students and professionals.

OSI Model Layers Overview

Mnemonic Devices	Layer Breakdown	Encapsulation
 Remember the order: All People Seem To Need Data Processing Please Do Not Throw Sausage Pizza Away 	The OSI (Open Systems Interconnection) model is a conceptual framework used to describe the functions of a networking system. It's divided into seven layers, each with specific responsibilities. Layers from top to bottom: 7. Application 8. Presentation 9. Session 10. Transport 11. Network 12. Data Link 13. Physical	Data travels down the OSI model during transmission, each layer adding its own header (encapsulation). On the receiving end, the headers are removed (decapsulation) as data moves up the layers.

Layers 7-4: Application to Transport

Layer 6: Presentation	Layer 5: Session	Layer 7: Application	Layer 4: Transport
Function: Data representation, encryption, and decryption. Protocols: TLS/SSL, MIME, XDR	Function: Manages connections between applications. Protocols: NetBIOS, SAP, PPTP,	Function: Provides network services to applications. Protocols: HTTP, SMTP, FTP, DNS,	Function: Reliable data transfer, segmentation, and flow control. Protocols: TCP, UDP
Example: Encoding data for proper display (e.g., ASCII, UTF-8),	L2TP Example: Starting, maintaining, and terminating sessions between a client and a server.	DHCP, Telnet, SNMP, POP3, IMAP, SSH, NTP	Example: TCP ensures reliable, ordered delivery of data. UDP offers faster, connectionless service.
encrypting data for secure transmission (SSL/TLS).		Example: A web browser (HTTP), email client (SMTP, POP3, IMAP)	

Layers 3-1: Network to Physical

Layer 3: Network

Function: Logical addressing and routing of data packets. Protocols: IP, ICMP, IGMP
Example: Routers use IP addresses to forward packets across networks.

Key Concepts and Protocols

TCP/IP vs. OSI

TCP/IP Model: A practical implementation of the OSI concepts, but with fewer layers (4 layers). Layers: Application, Transport, Internet,

Network Access.

OSI Model:

A theoretical model with seven layers, providing a detailed framework for network communication. It serves as a reference for understanding network protocols and functions. Layer 2: Data Link

Function: Physical addressing and error detection for direct connections. **Protocols:** Ethernet, Wi-Fi, PPP, Frame Relay, ARP

Example: Ethernet uses MAC addresses for device identification on a local network. Switches operate at this layer.

Layer 1: Physical

Function: Physical transmission of data bits over
a communication channel.
Protocols: Ethernet cables, Fiber optics, Wireless signals
Example: Cables, connectors, voltage levels, and radio frequencies.

Common Protocols by Layer

- Application Layer: HTTP, FTP, SMTP, DNS
- Transport Layer: TCP, UDP
- Network Layer: IP, ICMP
- Data Link Layer: Ethernet, Wi-Fi, ARP

Troubleshooting with OSI

The OSI model aids in network troubleshooting by allowing you to isolate problems to a specific layer. For instance, if you can't access a website (Application Layer), check lower layers like Network (IP configuration) and Data Link (physical connection).