

A comprehensive cheat sheet covering key concepts in quantum computing, including entanglement, quantum gates, algorithms, and the Bloch sphere.

Entanglement and Global Phase

Quantum Entanglement Basics

Definition: Entanglement is a quantum mechanical phenomenon in which the quantum states of two or more objects are linked together, even when the objects are separated by a large distance.

Key Properties:

- Correlation: Measuring the state of one particle instantaneously influences the state of the other(s).
- Non-Locality: This correlation occurs regardless of the distance separating the particles.

Mathematical Representation: A typical entangled state (Bell state) is represented as:

 $\label{eq:phi} $$ \theta = \frac{1}{\sqrt{2}}(00\ \theta + 11\ \theta) $$$

Global Phase: A global phase is a complex number e^{i\theta} that multiplies an entire quantum state. It does not affect measurement probabilities, hence is physically irrelevant.

Example:

Importance: While global phase doesn't affect single qubit measurements, relative phases between terms in a superposition are crucial for quantum interference and computation.

Quantum Gates and Circuits

Single-Qubit Gates

Pauli Gates:

- X (Bit-Flip): X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}
- Y: Y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}
- Z (Phase-Flip): Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}

Hadamard Gate (H): Creates superposition.

H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}

Phase Gate (S): Applies a phase of i to the |1\rangle state.

```
S = \begin{bmatrix} 1 & 0 \\ 0 & i \\bmatrix}
```

T Gate: Applies a phase of e^{i\pi/4} to the |1\rangle state. T = \begin{bmatrix} 1 & 0 \\ 0 & e^{i\pi/4} \end{bmatrix}

No-Cloning, Teleportation, Swapping

No-Cloning Theorem

Statement: It is impossible to create an identical copy of an arbitrary unknown quantum state.

Implication: Prevents perfect copying of quantum information, which is crucial for quantum cryptography.

Two-Qubit Gates

CNOT (Controlled-NOT): Flips the target qubit if the control qubit is |1\rangle. CNOT = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 4 & 0 \end{bmatrix}

SWAP Gate: Swaps the states of two qubits. SWAP = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}

Pure vs. Mixed States

Pure State:	A qubit state that can be represented by a single point on the Bloch sphere.
Mixed State:	A statistical ensemble of pure states, represented by a density matrix. Lies inside the Bloch sphere.

Quantum Entangling Circuits

Creating a Bell State:

Apply a Hadamard gate to the first qubit and then a CNOT gate with the first qubit as control and the second as target:

- 1. Start with |00\rangle
- Apply H to the first qubit: \frac{1}{\sqrt{2}} (|OO\rangle + |10\rangle)
- 3. Apply CNOT: \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle) = |\Phi^+\rangle

Quantum Teleportation

Process: Transferring a quantum state from one location to another using entanglement and classical communication.

Steps:

- 1. Alice and Bob share an entangled pair.
- 2. Alice performs a Bell measurement on her qubit and the qubit to be teleported.
- 3. Alice sends the classical measurement results to Bob.
- Bob applies appropriate quantum gates based on Alice's message to reconstruct the original qubit.

Key Points:

- The original qubit's state is destroyed at Alice's location.
- No information is transferred faster than light (classical communication is required).
- Requires pre-shared entanglement.

Quantum Algorithms

Deutsch Algorithm

Purpose: Determines whether a function f(x) is constant or balanced.

Algorithm:

- 1. Prepare the state \frac{1}{2}(|0\rangle |1\rangle)|0\rangle.
- 2. Apply the quantum oracle U_f.
- 3. Apply a Hadamard gate to the first qubit.
- Measure the first qubit. If the result is |O\rangle, the function is constant; if |1\rangle, it's balanced.

Quantum Oracle: A black box that implements the function f(x).

 $U_f|x\rangle|y\rangle = |x\rangle|y \oplus f(x)\rangle$

Advantage: Solves the problem with one query to the function, while a classical algorithm requires two.

Bloch Sphere

Bloch Sphere Representation

Definition: A geometrical representation of a qubit's state as a point on the surface of a unit sphere.

General Qubit State:

 $\label{eq:listic} $$ \frac{1}{2}} = \cos(\frac{1}{2}) + e^{i\theta} + e$

Coordinates:

- \theta: Angle from the north pole (\left|0\right\rangle state).
- \phi: Angle in the xy-plane.

Entanglement Swapping

Definition: A process by which two qubits that do not initially share entanglement can become entangled.

Process:

- Alice and Bob each share an entangled pair with a third party (e.g., Charlie and David, respectively).
- 2. Charlie and David perform a Bell measurement on their qubits.
- 3. Alice and Bob's qubits become entangled as a result of this measurement.

Use-case: Can extend quantum communication distances by creating entanglement between distant qubits.

Grover's Algorithm

Purpose: Searches an unsorted database of N items in O(\sqrt{N}) time.

Algorithm:

- Prepare an equal superposition of all states: |s\rangle = \frac{1}{\sqrt{N}} \sum_{x=0}^{N-1} |x\rangle.
- 2. Apply the Grover iteration R approximately \sqrt{N} times.
- 3. Measure the state to obtain the solution with high probability.

Grover Iteration: R = -H U_0 H U_f, where:

- H is the Hadamard gate.
- U_O is the inversion about the mean.
- U_f is the oracle that marks the solution.

Advantage: Provides a quadratic speedup over classical search algorithms.

Mapping to Sphere:

The qubit state maps to a point on the sphere with coordinates (\sin\theta \cos\phi, \sin\theta \sin\phi, \cos\theta).

Visualizing Gates on the Bloch Sphere

- X Gate: Rotation by \pi around the x-axis.
- Y Gate: Rotation by \pi around the y-axis.

Z Gate: Rotation by \pi around the z-axis.

Hadamard Gate: Rotation that maps |0\rangle to \frac{|0\rangle + |1\rangle}{\sqrt{2}} and |1\rangle to \frac{|0\rangle - |1\rangle}{\sqrt{2}}.

Quantum Fourier Transform (QFT)

Definition: A quantum version of the Discrete Fourier Transform (DFT).

N-th Root of Unity: \omega_N = e^{2\pi i / N}

QFT Transformation:

 $\label{eq:label} $$ x\rangle \rightarrow \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} e^{2\pi i x k / N} k\rangle $$$

Applications: Used in Shor's algorithm for factoring and in quantum phase estimation.